me Keaum

BLACK & VEATCH Waste Science, Inc.

400 Northridge Road, Suite 350, Atlanta, Georgia 30350, (404) 594-2500, Fax: (404) 587-2930

US EPA -- Region IV Site Inspections Work Assignment No. 12 BVWS Project 52012.304 September 12, 1994

Mr. Narindar Kumar Chief, Site Assessment Section U.S. Environmental Protection Agency 345 Courtland Street, NE Atlanta, Georgia 30365

Subject: Final Site Inspection Prioritization

Union Camp Corporation Savannah, Chatham County, GA EPA ID No. GAD980559215

Dear Mr. Kumar:

Enclosed please find two copies of the Final Site Inspection Prioritization for Union Camp Corporation site in Savannah, Chatham County, Georgia. If you have any questions, please contact me at 404/643-2320.

Very truly yours,

BLACK & VEATCH Waste Science, Inc.

Victor Blix Project Manager

fw Enclosure

cc: Doug Thompson, EPA PO, w/o enclosures
Deborah Davidson, EPA CO, w/o enclosures

Earl Bozeman, EPA WAM, w/o enclosures

RFC'D,

SFP 1 3 1994

-- 1 - - - 1 1 -

Environmental Services

Peachtree Center Tower 230 Peachtree Street, N.W. Suite 500 Atlanta, GA 30303

Telephone: 404-681-0933 Fax: 404-681-0894 BEUID.

SEP 1 3 1994

ver L orio

July 21, 1994

Mr. Narindar Kumar, Chief Site Assessment Section

U. S. Environmental Protection Agency

345 Courtland Street, NE Atlanta, Georgia 30365 Subject: Site Inspection Prioritization

Union Camp Corporation

Savannah, Chatham County, Georgia

EPA ID GAD980559215

Re:

BVWS Contract Nº 68-W9-0055 - Task Order 6, Amendment 2

BVWS Project 52012.304

Document Control BVWS-SIP-RD-039

Dear Mr. Kumar:

Dynamac Corporation has been tasked by BLACK & VEATCH Waste Science, Inc., under U.S. Environmental Protection Agency (EPA) Contract Nº 68-W9-0055 to conduct a Site Inspection Prioritization (SIP) for the Union Camp Corporation (Union Camp) in Savannah, Chatham County, Georgia. In accordance with the scope of work for this task order, a preliminary Hazard Ranking System (HRS) score was prepared to determine the need for future activities at the site.

Union Camp (the facility) operates a multifaceted manufacturing facility in a highly industrialized area of Savannah. From 1936 to 1962, Union Camp operated a landfill along Allen Boulevard in the northwestern portion of the facility property. This landfill has been the primary focus of investigations conducted at the facility (Refs. 1; 2, p. 1; 3; 4, p. 1; 5, p. 2). The approximately 4-acre landfill mainly received wastes related to paper and board production at the facility, including wood chips, grit, sand and ashes. The amount of waste deposited into the landfill is not known (Refs. 2, p. 4; 5, p. 2). Radioactive waste and DDT allegedly were deposited at the landfill; however, the facility disputes allegations of radioactive waste disposal (Ref. 5, p. 2). The landfill was closed in 1961 or 1962 (Refs. 2, p. 4; 5, p. 1). Currently, the landfill rises approximately 40 to 60 feet above the land surface and is vegetated with grass and shrubs (Refs. 2, p. 4; 5, p. 2). During a November 1988 site visit, Georgia Department of Natural Resources, Environmental Protection Division (GA EPD) personnel observed waste resembling fly ash and an unknown residue resembling wood pulp on the surface of the landfill (Ref. 5, p. 2).

Mr. Narindar Kumar July 21, 1994 Page 2

On August 26, 1988, GA EPD conducted a Screening Site Investigation (SSI) during which a waste sample, two soil samples, two groundwater samples and a surface water sample were collected (Refs. 2, pp. 9, 10; 5, p. 4). The samples were analyzed for selected inorganic constituents and volatile organic compounds (VOCs) (Ref. 2, App. C, p. 1). No background surface water samples were collected; however, a background soil sample was collected. The SSI Report designated a private well located approximately 2.4 miles northeast of the landfill as the site of a background groundwater sample; however, due to its distance from the landfill and its unknown depth, the private well was not evaluated as a background well for this SIP (Ref. 2, p. 9). Analyses of the waste sample indicated detectable levels of barium, chromium and nickel (Ref. 2, p. 10, App. C, p. 2). Analyses of the soil sample indicated elevated levels of barium, chromium and lead (Ref. 2, p. 10, App. C, p. 2). Analyses of a groundwater sample collected from a 4-foot boring on the northwest side of the landfill indicated detectable levels of barium, chromium, nickel and lead (Ref. 2, p. 10, App. C, p. 2). Analyses of the surface water sample which was collected from an intermittently flowing drainage ditch on the northwest edge of the landfill indicated detectable levels of barium and chromium (Ref. 2, p. 10, App. C, p. 2; 5, p. 2). The sample location map does not indicate the origin or terminus of the drainage ditch (Ref. 5, p. 5). No VOCs were detected in any of the samples collected during the SSI.

A preliminary HRS score for the landfill was calculated using the Site Inspection Worksheets. Pathways evaluated include groundwater migration, surface water migration, soil exposure and air migration. The score reflects a Hazardous Waste Quantity value of 10 for all pathways based on the total acreage of the landfill (4 acres). Contaminant characteristic values were highest for lead and chromium.

Approximately 65,538 persons within a 4-mile radius of the landfill obtain potable water from municipal water companies and community wells which are supplied by wells completed in the confined Floridan Aquifer system, which is a karstic aquifer. A total of 119 persons are supplied drinking water from private wells within the 4-mile radius (Refs. 2, p. 5; 6, pp. 2-4, 102-104, 156, 159, 196; 7). No observed release to groundwater was documented; therefore, the groundwater migration pathway was scored based upon potential to release to the Floridan Aquifer system. The groundwater migration pathway score was highly influenced by the large groundwater population.

Surface water runoff from the landfill drains either northwest into a drainage ditch located northwest of the landfill or radially from the landfill into the surrounding, flat-lying terrain (Refs. 1; 2, p. 5; 5, pp. 2, 5). For the purposes of this SIP, the surface water runoff in the drainage ditch was assumed to enter the network of drainage ditches at the facility and eventually enter the tidally influenced Savannah River approximately 3,000 feet northeast of the landfill (Refs. 1; 3, p. 5; 8). The 15-mile surface water migration pathway is completed in the Savannah River (Ref. 1). The Savannah River, which has an estimated

Mr. Narindar Kumar July 21, 1994 Page 3

flow rate of between 10,000 and 100,000 cubic feet per second, is a documented fishery (Refs. 9; 10). The ranges of several federally and state-designated endangered and/or threatened species occur within the state of Georgia; however, no species were specifically identified along the Savannah River (Ref. 11). The Tybee Island National Wildlife Refuge, a sensitive environment, is located approximately 14.5 miles downstream of the landfill (Ref. 1). No surface water intakes for drinking water were identified along the 15-mile surface water migration pathway (Ref. 2, p. 5). The surface water pathway was scored based upon potential to release due to the lack of a documented observed release (Ref. 12). The overall surface water migration pathway score was limited by a low potential to release value and low dilution weight value for the Savannah River.

Land use within a 0.5 mile radius of the landfill is highly industrialized; land use within the remainder of the 4-mile radius is a mixture of residential and industrial areas (Refs. 1; 2, pp. 1, 4). The nearest residence is located approximately 3,696 feet west of the landfill (Ref. 1). The facility is active; five workers were assumed to be located on a source in order to present a "worst-case" scenario. The ranges of several endangered and/or threatened species include Chatham County and the state of Georgia; however, the specific locations of these species are unknown (Refs. 1; 11). A total of 63,864 people reside within 4 miles of the landfill (Ref. 13). The soil exposure pathway score was evaluated based on the presence of inorganic constituents in the onsite soil sample and waste sample collected during the SSI; however, the soil exposure score was limited by low target values. The air pathway was scored based on potential to release; no air samples have been collected.

HRS SCORING SUMMARY

$$S_{gw} = 57.82$$

 $S_{sw} = 0.22$
 $S_{soil} = 0.60$
 $S_{air} = 0.52$
OVERALL SCORE = 28.91

Due to the site score, which is above the cutoff value of 28.50, the landfill may be eligible for further action. It should be noted, however, that the overall site score was greatly influenced by the large groundwater target population obtaining water from the confined Floridan Aquifer system.

Mr. Narindar Kumar July 21, 1994 Page 4

Attached are all references used during this evaluation. If you have any questions or comments, please contact Victor Blix at (404) 594-2500.

Sincerely,

DYNAMAC CORPORATION

Betty Ann Pruner Site Manager David L. Rusher Vice President Southern Division

Enclosures

cc: Lori C. Conway, Dynamac Site Assessment Project Manager Victor Blix, BVWS SIP Project Manager File

REFERENCES

- 1. U.S. Geological Survey, 7.5 minute series Topographic Quadrangle Maps of Georgia: Savannah, Georgia-South Carolina 1978, Port Wentworth, Georgia-South Carolina 1980, Limehouse, South Carolina-Georgia 1980, Garden City, Georgia 1980, scale 1: 24,000.
- 2. Screening Site Investigation Report for Union Camp Corporation, Savannah, Georgia. Prepared by Randy E. Dominy, Environmental Specialist, Georgia Environmental Protection Division, October 1988.
- 3. Site Maintenance Form, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, CERCLA, July 16, 1985.
- 4. Potential Hazardous Waste Site Identification and Preliminary Assessment (EPA Form 2070-2 for Union Camp Corporation, Savannah, Chatham County, Georgia. Prepared by Jim Ussery, September 14, 1982.
- 5. Report of Trip to Union Camp Corporation on August 25, 1988; prepared by Randy Dominy, Environmental Specialist, Georgia Department of Natural Resources, Environmental Protection Division, November 29, 1988.
- 6. Len Dangerfield, FOIA Coordinator, Water Management Division, U.S. Environmental Protection Agency, Region IV, letter to with attachment Susan Rusher, Site Manager, Dynamac Corporation, March 31, 1993. Subject: 4-RIN-00834-93, FOIA request regarding Federal Reporting Data Systems Report on Chatham County, Georgia.
- 7. U.S. Department of Commerce, Bureau of the Census, <u>1990 Census of Population and Housing: Summary Population and Housing Characteristics Georgia</u>, 1990 CPH-1-12 (Washington, D.C.: GPO, 1991), excerpt, 3 pages.
- 8. Carl Hall, Regional Supervisor, Georgia Department of Natural Resources, Coastal Coastal Region Fishery Management, telephone conversation with Sandra Harrigan, Dynamac Corporation, May 6, 1994. Subject: Tidal influence in selected surface water bodies in Savannah, Georgia.
- 9. Bill Stokes, Supervisor Hydrologist, U.S. Geological Services, telephone conversation with Susan L. Rusher, Dynamac Corporation, September 15, 1992. Subject: Types of surface water bodies in the Thunderbolt area.
- 10. Carl Hall, Regional Supervisor, Georgia Department of Natural Resources, Coastal Coastal Region Fishery Management, telephone conversation with Sandra Harrigan, Dynamac Corporation, April 28, 1994. Subject: Uses of surface water bodies in Savannah, Georgia.

- 11. U.S. Fish and Wildlife Service, <u>Endangered and Threatened Species of the Southeastern United States</u> (The Red Book), Vol. 1 (Washington, D.C.: GPO, 1992), excerpt, 6 pages.
- 12. U.S. Department of Commerce, <u>Rainfall Frequency Atlas of the United States</u>, Technical Paper Number 40 (Washington, D.C.: GPO, 1961), excerpt, 3 pages.
- 13. U.S. Environmental Protection Agency, <u>Graphical Exposure Modeling System</u> (GEMS) Data Base, compiled from U.S. Bureau of the Census data (1990).

Union Camp Corporation

Savannah, Chatham County, Georgia Location:

GROUNDWATER MIGRATION PATHWAY SCORESHEET

Factor Categories and Factors

	Likelihood of Release to an Aquifer	Maximum Value	Value Assigned	
1.	Observed Release	550	0	
2.	Potential to Release			
	2a. Containment	10	10	
	2b. Net Precipitation	10	3	
	2c. Depth to Aquifer	5	3	
	2d. Travel Time	35	<u>15</u>	
	2e. Potential to Release			
	$(lines 2a \times [2b + 2c + 2d])$	500	<u>210</u>	
3.	Likelihood of Release			
	(higher of lines 1 and 2e)	550		<u>210</u>
	Waste Characteristics			·
4.	Toxicity/Mobility	a	100	
5.	Hazardous Waste Quantity	a	10	
6.	Waste Characteristics	100		6
				<u>_</u>
	<u>Targets</u>			
7.	Nearest Well	50	20	
8.	Population			
	8a. Level I Concentrations	b	0	
	8b. Level II Concentrations	b	0	
	8c. Potential Contamination	b	<u>3,766</u>	
	8d. Population (lines 8a + 8b + 8c)	b	3,766	
9.	Resources	5	0	
10.	Wellhead Protection Area	20	0	
11.	Targets (lines $7 + 8d + 9 + 10$)	b		<u>3,786</u>
	Groundwater Migration Score for an Aquifer			
12.	Aquifer Score ([lines $3 \times 6 \times 11]/82,500$) ^c	100		57.82
	Groundwater Migration Pathway Score			
13.	Groundwater Migration Pathway Score $(S_{gw})^c$ (highest value from line 12 for all aquifers evaluated)	100		<u>57.82</u>

Maximum value applies to waste characteristics category.
 Maximum value not applicable.

^c Do not round to nearest integer.

Union Camp Corporation

Location:

Savannah, Chatham County, Georgia

DRAFT

SURFACE WATER OVERLAND/FLOOD MIGRATION COMPONENT SCORESHEET

<u>Fact</u>	or Categories and Factors	Maximum Value	Value Assigned
DRI	NKING WATER THREAT		
	Likelihood of Release		
1.	Observed Release	550	0
2.	Potential to Release by		
	Overland Flow	10	10
	2a. Containment	10	<u>10</u> 7
	2b. Runoff2c. Distance to Surface Water	25 25	6
	2d. Potential to Release by	23	0
	Overland Flow		
	(lines $2a \times [2b + 2c]$)	500	130
3.	Potential to Release by Flood	500	
٠.	3a. Containment (Flood)	10	10
	3b. Flood Frequency	50	<u>7</u> ·
	3c. Potential to Release		
	by Flood (lines 3a x 3b)	500	<u>70</u>
4.	Potential to Release		
	(lines 2d + 3c, subject to		
	a maximum of 500)	500	200
5.	Likelihood of Release		
	(higher of lines 1 and 4)	550	200
	Waste Characteristics		
6.	Toxicity/Persistence	a	10,000
7.	Hazardous Waste Quantity	a	<u> </u>
8.	Waste Characteristics	100	18
	<u>Targets</u>		
9.	Nearest Intake	50	0
10.	Population		
	10a. Level I Concentrations	b	0
	10b. Level II Concentrations	b	0
	10c. Potential Contamination	b	0
	10d. Population (lines $10a + 10b + 10c$)	b	0
11.	Resources	5 b	5
12.	Targets (lines $9 + 10d + 11$)	Ü	5
	Drinking Water Threat Score		
13.	Drinking Water Threat Score		
	([lines $5 \times 8 \times 12]/82,500$,		
	subject to a maximum of 100)	100	0.22

Union Camp Corporation

DRAFT

Location:

Savannah, Chatham County, Georgia

SURFACE WATER OVERLAND/FLOOD MIGRATION COMPONENT SCORESHEET, Continued

Facto	or Categories and Factors	Maximum Value	Value Assigned	
HUN	MAN FOOD CHAIN THREAT			
	Likelihood of Release			
14.	Likelihood of Release (value from line 5)	550		200
	Waste Characteristics			
15. 16. 17.	Toxicity/Persistence/Bioaccumulation Hazardous Waste Quantity Waste Characteristics	a a 1,000	$\frac{5 \times 10^7}{10}$	100
	<u>Targets</u>			
18. 19.	Food Chain Individual Population	50	0	
	19a. Level I Concentrations 19b. Level II Concentrations 19c. Potential Human Food	b b	0	
	Chain Contamination	b b	0	
20.	19d. Population (lines 19a + 19b + 19c) Targets (lines 18 + 19d)	b	0	0
	Human Food Chain Threat Score			
21.	Human Food Chain Threat Score ([lines 14 x 17 x 20]/82,500, subject to a maximum of 100)	100		0.00
ENV	TRONMENTAL THREAT		•	
	Likelihood of Release			
22.	Likelihood of Release (value from line 5)	550		200
	Waste Characteristics			
23.	Ecosystem Toxicity/Persistence/	a	F106	
24. 25.	Bioaccumulation Hazardous Waste Quantity Waste Characteristics	1,000	5x10 ⁶ 10	56

	Name: <u>Union Camp Corporation</u> ation: <u>Savannah, Chatham County, G</u>	Georgia	DRAFT	
SU	RFACE WATER OVERLAND/FLOOD N	MIGRATION COMPONEN	IT SCORESHEET, C	Concluded
Fact	or Categories and Factors	Maximum Value	Value Assigned	
EN	VIRONMENTAL THREAT (concluded)			
	Targets			
26. 27.	Sensitive Environments 26a. Level I Concentrations 26b. Level II Concentrations 26c. Potential Contamination 26d. Sensitive Environments (lines 26a + 26b + 26c) Targets (value from line 26d)	b b b	0 0 0.00075 0.00075	0.00075
28.	Environmental Threat Score Environmental Threat Score ([lines 22 x 25 x 27]/82,500, subject to a maximum of 60)	60	_	0.00
SUR	RFACE WATER OVERLAND/FLOOD M	IIGRATION COMPONEN	T SCORE FOR A W	ATERSHED
29. SUR	Watershed Score ^c (lines 13 + 21 + 28, subject to a maximum of 100) RFACE WATER OVERLAND/FLOOD	100 MIGRATION COMPONE	- ENT SCORE	0.22
30.	Component Score $(S_{of})^c$ (highest score from line 29 for all watersheds evaluated, subject to a maximum of 100)	100	_	0.22

Maximum value applies to waste characteristics category. Maximum value not applicable. Do not round to nearest integer. а

b

Location:

Union Camp Corporation
Savannah, Chatham County, Georgia

DRAFT

SOIL EXPOSURE PATHWAY SCORESHEET

RESIDENT POPULATION THREAT	
Likelihood of Exposure	
1. Likelihood of Exposure 550	<u>550</u>
Waste Characteristics	
2. Toxicity a 10,000	
 3. Hazardous Waste Quantity 4. Waste Characteristics 100 100 	18
<u>Targets</u>	
5. Resident Individual 500	
6. Resident Population	
6a. Level I Concentrations b 0 0	
6c. Resident Population	
(lines $6a + 6b$) b 0	
7. Workers 15 <u>5</u>	
8. Resources 5 <u>0</u>	
9. Terrestrial Sensitive	
Environments d0	
10. Targets (lines 5 + 6c + 7 + 8 + 9)	5
Resident Population Threat Score	
11. Resident Population Threat	
([lines 1 x 4 x 10]/82,500)	0.60
NEARBY POPULATION THREAT	
Likelihood of Exposure	
12. Attractiveness/Accessibility 1005	
13. Area of Contamination 100 40	
14. Likelihood of Exposure 500	5
Waste Characteristics	
15. Toxicity a	
16. Hazardous Waste Quantity a 10	
17. Waste Characteristics 100	<u> 18</u>

Union Camp Corporation

Location:

Savannah, Chatham County, Georgia

DRAFT

SOIL EXPOSURE PATHWAY SCORESHEET, Concluded

Fact	or Categories and Factors	Maximum Value	Value Assigned
NEA	ARBY POPULATION THREAT (Concluded)		
	Targets		
18. 19. 20.	Nearby Individual Population Within 1 Mile Targets (lines 18 + 19)	1 b b	<u>0</u> 1
	Nearby Population Threat Score		
21.	Nearby Population Threat ([lines 14 x 17 x 20]/82,500)	b	0.60
SOI	L EXPOSURE PATHWAY SCORE		
22.	Soil Exposure Pathway Score $(S_{soil})^d$ (lines 11 + 21, subject to a maximum of 100)	100	0.60

^a Maximum value applies to waste characteristics category.

b Maximum value not applicable.

C Do not round to nearest integer.

No specific maximum value applies to factor. However, a pathway score based solely on sensitive environments is limited to a maximum value of 60.

Site Name: Location:

Savannah, Chatham County, Georgia

AIR MIGRATION PATHWAY SCORESHEET

Factor Categories and Factors

	Likelihood of Release	Maximum Value	Value Assigned	<u>l</u>
1.	Observed Release	550	0	
2.	Potential to Release			
	2a. Gas Potential to Release	500		
	2b. Particulate Potential to Release	500		
	2c. Potential to release higher of			
	lines 2a and 2b)	500	500*	
3.	Likelihood of Release			
	(higher of lines 1 and 2c)	550		500*
	Waste Characteristics			
4.	Toxicity/Mobility	a	2	•
5.	Hazardous Waste Quantity	a	<u>10</u>	
6.	Waste Characteristics	100		2
	Targets			
7.	Nearest Individual	50	20	
8.	Population			
	8a. Level I Concentrations	b	0	
	8b. Level II Concentrations	b	0	
	8c. Potential Contamination	b	23	
	8d. Population (lines 8a + 8b + 8c)	b	<u>23</u>	
9.	Resources	5	0	
10.	Sensitive Environments	ı		
	10a. Actual Contamination	d	0	,
	10b. Potential Contamination	d	0	
	10c. Sensitive Environments	d		
	(lines 10a + 10b)	b	0	
11.	Targets (lines $7 + 8d + 9 + 10c$)	U		43
	Air Migration Pathway Score			
12.	Air Migration Pathway Score (Sair)			
	([lines 3 x 6 x 11]/82,500)	100		0.52

^a Maximum value applies to waste characteristics category.

b Maximum value not applicable.

^c Do not round to nearest integer.

No specific maximum value applies to factor. However, a pathway score based solely on sensitive environments is limited to a maximum value of 60.

^{*} Default value.

⁻ Not evaluated.

SITE INSPECTION WORKSHEETS

GAD980559215

	SITE LOCATION					
SITE NAME: LE	GAL, COMMON, O	OR DESCRIPTIVE NAM	E OF SITE			
Unio	n Can	SPECIFIC LOCATION I	ration			
		SPECIFIC LOCATION	DENTIFIER			
Allei	n Boul	evard				
CITY	·		STATE	ZIP CODE	TELEPHONE	
Savo	annah		GA	31401	(912) 237-577	
COORDINATES	annah :: LATITUDE and L	ONGITUDE	TOWNSHIP, RAI	NGE, AND SECTION	ON ·	
			1			
L	.*	·	1	<u> </u>		
	1.3	OWNER/OPERATO	R IDENTIFICA	TION	·	
OWNER	1		OPERATOR			
Union	Camp	Corporation	Christ	opher	Matthews	
OWNER ADDRE	ss /	J	OPERATOR ADD	PRESS		
			Allen	Boulev	ard	
CITY			ary	1		
			Savannah			
STATE	ZIP CODE	TELEPHONE	STATE	ZIP CODE	TELEPHONE	
	<u> </u>		GA	31401	(9/2) 28-5771	
		SITE EVA	LUATION			
AGENCY/ORGA	NIZATION					
INVESTIGATOR						
Betty F	Inn Pr	uner				
CONTACT		/ -				
John M	c Keown	/EPA				
ADDRESS	, .	- Suite			·	
230 Pe	each tree	Sti 500				
CITY A 1.	1 -	_	STATE	$\bigcap \Lambda$	ZIP CODE	
ATTan	ta G,	4		GA	30303	
TELEPHONE	1 - 50 -					
404 68	1 - 693	3				

CONFIDENTIAL

GENERAL INFORMATION

	- See	SI	Report	
 			·	
 				
		•		
			<u></u>	
				
·		·		
·	· ·			
				
				

TAIT

GENERAL INFORMATION (continued)

Site Sketch: Provide a sketch of the site. Indicate all pertinent features of the site and nearby environments including sources of wastes, areas of visible and buried wastes, buildings, residences, access roads, parking areas, fences, fields, drainage patterns, water bodies, vegetation, wells, sensitive environments, and other features.

- Sle SI, - (Ref. 8 of SI)

GENERAL INFORMATION (continued)

Source Descriptions: Describe all sources at the site. Identify source type and relate to waste disposal operations. Provide source dimensions and the best available waste quantity information. Describe the condition of sources and all containment structures. Cite references.

SOURCE TYPES

Landfill: A man-made (by excavation or construction) or natural hole in the ground into which wastes have come to be disposed by backfilling, or by contemporaneous soil deposition with waste disposal.

Surface Impoundment: A natural topographic depression, man-made excavation, or diked area, primarily formed from earthen materials (lined or unlined) and designed to hold an accumulation of liquid wastes, wastes containing free liquids, or sludges not backfilled or otherwise covered; depression may be wet with exposed liquid or dry if deposited liquid has evaporated, volatilized or leached; structures that may be described as lagoon, pond, aeration pit, settling pond, tailings pond, sludge pit; also a surface impoundment that has been covered with soil after the final deposition of waste materials (i.e., buried or backfilled).

Drum: A portable container designed to hold a standard 55-gallon volume of wastes.

Tank and Non-Drum Container: Any device, other than a drum, designed to contain an accumulation of waste that provides structural support and is constructed primarily of fabricated materials (such as wood, concrete, steel, or plastic); any portable or mobile device in which waste is stored or otherwise handled.

Contaminated Soil: An area or volume of soil onto which hazardous substances have been spilled, spread, disposed, or deposited.

PIIe: Any non-containerized accumulation above the ground surface of solid, non-flowing wastes; includes open dumps. Some types of waste piles are:

Chemical Waste Pile:
 A pile consisting primarily of discarded chemical products, by-

products, radioactive wastes, or used or unused feedstocks.

• Scrap Metal or Junk Pile: A pile consisting primarily of scrap metal or discarded durable

goods (such as appliances, automobiles, auto parts, batteries, etc.) composed of materials containing hazardous substances.

Tailings Pile: A pile consisting primarily of any combination of overburden from

a mining operation and tailings from a mineral mining,

beneficiation, or processing operation.

Trash Pile: A pile consisting primarily of paper, garbage, or discarded non-

durable goods containing hazardous substances.

Land Treatment: Landfarming or other method of waste management in which liquid wastes or sludges are spread over land and tilled, or liquids are injected at shallow depths into soils.

Other: Sources not in categories listed above.

GENERAL INFORMATION (continued)

Source Description: Include description of containment per pathway for ground water (see HRS Table 3-2), surface water (see HRS Table 4-2), and air (see HRS Tables 6-3 and 6-9).

-See SI Report
Hazardous Waste Quantity (HWQ) Calculation: SI Tables 1 and 2 (See HRS Tables 2-5, 2-6, and 5-2).
- possibly radioactive 4 acres in Size waste
disposal - Neceived wastes from 1736 in landfill to 1962-records of wastes
- possibly disposed non-existent drums of - May have received wastes unidentified - May have the paper and board waste related to paper and board industry - SI
$4 \text{ acres} \times 43,560 \text{ ft}^2 = 174,240 \text{ ft}^2$
174,240f+ = 34,000 = 5.12 HWQ = 10 for Soil Exposure
Attach additional pages, if necessary HWQ = /O

SI TABLE 1: HAZARDOUS WASTE QUANTITY (HWQ) SCORES FOR SINGLE SOURCE SITES AND FORMULAS FOR MULTIPLE SOURCE SITES

•		Sino	le Source Sites	
		(assigned HWQ scores)		
(Column 1)	(Column 2)	(Column 3)	(Column 4)	
TIER Source Type		HWO 10	HWO - 100	
HER	Source Type	HWQ = 10 HWQ = 1 #	HWQ = 100	
A		Hazardous Constituent Quantity data are complete		
Hazerdous Constituent Quantity	N/A	HWQ = 10 if Hazardous Constituent	>100 to 10,000 fbs	
		Quantity data are not complete		
B Hazerdous Wastestream Quantity	N/A	≤ 500,000 lbs	>500,000 to 50 million lbs .	
	Landfill	≤ 6.75 million ft ³ ≤ 250,000 yd ³	>6.75 million to 675 million tt ³ >250,000 to 25 million yd ³	
	Surface impoundment	≤6,750 ft ³ ≤250 yd ³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³	
	Drums	≤1,000 drums	>1,000 to 100,000 drums	
C Volume	Tanks and non-drum containers	≤50,000 gallons	>50,000 to 5 million gallons	
	Contaminated soil	≤6.75 million ft ³ ≤250,000 yd ³	>6.75 million to 675 million ft ³ >250,000 to 25 million yd ³	
	Pile	≤6,750 ft ³ ≤250 yd ³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³	
	Other	≤6,750 ft ³ ≤250 yd ³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³	
	Landfill	≤340,000 ft ²	>340,000 to 34 million ft ²	
1		≤7.8 acres	>7.8 to 780 acres	
	Surface	≤1,300 ft ²	>1,300 to 130,000 ft ²	
	impoundment	≤0.029 acres	>0.029 to 2.9 acres	
D Aren	Contaminated soil	≤3.4 million ft² ≤78 acres	> 3.4 million to 340 million ft ² > 78 to 7,800 acres	
	Pile	≤1,300 ft ² ≤0.029 acres	>1,300 to 130,000 ft ² >0.029 to 2.9 acres	
	Land treatment	≤27,000 ft² ≤0.62 acres	>27,000 to 2.7 million ft ² >0.62 to 62 acres	

1 ton = 2,000 pounds = 1 cubic yard = 4 druins = 200 gallons

TABLE 1 (CONTINUED)

Single Source (assigned HWQ	Multiple Source Sites			
(Column 5) HWQ = 10,000	(Column 6) HWQ = 1,000,000	(Column 7) Divisors for Assigning Source WQ Values	(Column 2) Source Type	(Column 1)
>10,000 to 1 million (bs	> 1 million tos	fbs + 1	N/A	A Hezerdous Constituent Quentity
>50 million to 5 billion lbs	> 5 billion lbs	lbs + 5,000	N/A	B Hazardous Wastestream Quantity
>675 million to 67.5 billion ft ³ >25 million to 2.5 billion yd ³	> 67.5 billion ft ³ > 2.5 billion yd ³	ft ³ + 67,500 yd ³ + 2,500	Landfill	
>675,000 to 67.5 million ft ³ >25,000 to 2.5 million yd ³	> 67.5 million ft ³ > 2.5 million yd ³	ft ³ + 67.5 yd ³ + 2.5	Surface Impoundment	
>100,000 to 10 million drums	> 10 million drums	drums + 10	Drums	
>5 million to 500 million gallons	> 500 million gallons	gallons + 500	Tanks and non-drum	C Volume
>675 million to 67.5 billion ft ³ >25 million to 2.5 billion yd ³	> 67.5 billion ft ³ > 2.5 billion yd ³	ft ³ + 67,500 yd ³ + 2,500	containers Contaminated Soil	
>675,000 to 67.5 million ft ³ >25,000 to 2.5 million yd ³	> 67.5 million ft ³ > 2.5 million yd ³	ft ³ + 67.5 yd ³ + 2.5	Pile	
>675,000 to 67.5 million ft ³ >25,000 to 2.5 million yd ³	> 67.5 million ft ³ > 2.5 million yd ³	ft ³ + 67.5 yd ³ + 2.5	Other	
>34 million to 3.4 billion tt ² >780 to 78,000 acres	> 3.4 billion ft ² >78,000 acres	ft ² + 3,400 acres + 0.078	Landfill	
>130,000 to 13 million ft ² >2.9 to 290 acres	> 13 million ft ² > 290 acres	ft ² + 13 acres + 0.00029	Surface Impoundment	D
> 340 million to 34 billion ft ² > 7,800 to 780,000 acres	> 34 billion ft ² > 780,000 acres	ft ² + 34,000 acres + 0.78	Contaminated Soil	Area
> 130,000 to 13 million ft ² > 2.9 to 290 acres	> 13 million ft ² > 290 acres	ft ² + 13 acres + 0.00029	Pile	
>2.7 million to 270 million ft ² >62 to 6,200 acres	> 270 million ft ² > 6,200 acres	ft ² + 270 acres + 0.0062	Land Treatment	

¹ ton = 2,000 pounds = 1 cubic yard = 4 drums = 200 gallons

HAZARDOUS WASTE QUANTITY (HWQ) CALCULATION

For each migration pathway, evaluate HWQ associated with sources that are available (i.e., incompletely contained) to migrate to that pathway. (Note: If Actual Contamination Targets exist for ground water, surface water, or air migration pathways, assign the calculated HWQ score or 100, whichever is greater, as the HWQ score for that pathway.) For each source, evaluate HWQ for one or more of the four tiers (SI Table 1; HRS Table 2-5) for which data exist: constituent quantity, wastestream quantity, source volume, and source area. Select the tier that gives the highest value as the source HWQ. Select the source volume HWQ rather than source area HWQ if data for both tiers are available.

Column 1 of SI Table 1 indicates the quantity tier. Column 2 lists source types for the four tiers. Columns 3, 4, 5, and 6 provide ranges of waste amount for sites with only one source, corresponding to HWQ scores at the tops of the columns. Column 7 provides formulas to obtain source waste quantity values at sites with multiple sources.

- 1. Identify each source type.
- 2. Examine all waste quantity data available for each source. Record constituent quantity and waste stream mass or volume. Record dimensions of each source.
- 3. Convert source measurements to appropriate units for each tier to be evaluated.
- 4. For each source, use the formulas in the last column of St Table 1 to determine the waste quantity value for each tier that can be evaluated. Use the waste quantity value obtained from the highest tier as the quantity value for the source.
- Sum the values assigned to each source to determine the total site waste quantity.
- Assign HWQ score from SI Table 2 (HRS Table 2-6).

Note these exceptions to evaluate soil exposure pathway HWQ (see HRS Table 5-2):

- The divisor for the area (square feet) of a landfill is 34,000.
- The divisor for the area (square feet) of a pile is 34.
- Wet surface impoundments and tanks and non-drum containers are the only sources for which volume measurements are evaluated for the soil exposure pathway.

SI TABLE 2: HWQ SCORES FOR SITES

Site WQ Total	HWQ Score
0	0
1 ^à to 100	₁ b
> 100 to 10,000	100
> 10,000 to 1 million	10,000
> 1 million	1,000,000

a If the WQ total is between 0 and 1, round it to 1.

b If the hazardous constituent quantity data are not complete, assign the score of 10.

				,	·	•	•									
								SUF	RFACE	WATER	PATHW					AIR
SOURCE	HAZARDOUS SUBSTANCE	TOXICITY	WA [*]	TER IWAY		OVE	ERLAND/	FLOOD	MIGRAT	ION						Pathody
-			GW Mobility (HRS Table 3-8)	Tox/ Mobility Value (HRS Table 3-9)	Per (HRS Tables 4-10 and 4-11)	Tox/Per Value (HRS Table 4-12)	ENV Bloac Pot. (HRS Table 4-15)	Tox/ Pera/ Bloac Value (HRS Table 4-16)	Ecotox (HRS Table 4-19)	Ecotox/ Pers (HRS Table 4-20)	Ecotox/ Pers/ Bioacc Value (HRS Table 4-21)	Tox/ Mob/ Pera Value (HRS Table 4-26)	Tox/ Mob/ Pers/ Bloacc Value (HRS Table 4-28)	Ecotox/ Mob/ Pers Value (HRS Table 4-29)	Ecotow Mob/ Per/ Bioacc Value (HRS Table 4-30)	Toxicity
1		10	1.0E-2	.10	1.0	10	0.5	5	1	1	0.5					.002
1	Chroniun				1.0	10,000	5000	5×10 6	10,000			, 	<u> </u>		<u> </u>	2 .0
						10,000	5000	5×10	1000				· · ·	 		2 73
1		10,000	2.05-5	.10	1.0	10,000	3000	3×10°	7000	1000	3 <i>XIO</i>		 	<u> </u>	 	
	<u> </u>	 												<u> </u>		
							1									
		 -	ļ		 	<u> </u>	 							 	 -	-
		 	 		 		 	 		ļ <u>.</u>				 -	 	-
				ļ	+	 			 	 					+	
	ł	.	<u> </u>		<u> </u>	<u> </u>		<u> </u>		<u></u>					<u> </u>	
	Source 1a 2 3 SOURCE	Sources: 1. Lawafil 2. 3. BOURCE HAZARDOUS SUBSTANCE 1 Barium 1 Chronium 1 Nickel	Sources: 1. Lavafiell (college) 3. Source Substance Toxicity 1. Barium 10.000 1. Nickel 10,000 1. Lead 10,000	SOUICES: 1. Landfill (collisted de 2). 3. BOURCE HAZARDOUS SUBSTANCE TOXICITY PATH GW Mobility (HRS Table 3-8) 1. Barium 10,000 1.0E-2 1. Nickel 10,000 2.0E-5 1. Lead 10,000 2.0E-5	SOURCE HAZARDOUS SUBSTANCE TOXICITY GW Mobility (HRS Table 3-8) 1 Barium 10 105-2 100 A Nickel 10,000 2.05-5 .10	SOURCE HAZARDOUS SUBSTANCE TOXICITY HAZARDOUS SUBSTANCE TOXICITY GW Mobility Value (HRS Tables Table	SOURCE SOURCE SOURCE SUBSTANCE TOXICITY HAZARDOUS SUBSTANCE TOXICITY GW Mobility Value (HRS Tables Tables Tables Table 4-10 and Table 3-8) 3-9) 4-11) 4-12) 1 Barium 10.000 1.0E-2 1.00 1.0 10,000 1 1 Chronium 10.000 2.0E-5 .10 1.0 10,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SOURCE SOURCE SUBSTANCE TOXICITY HAZARDOUS SUBSTANCE TOXICITY GW Mobility Value (HRS Tables Tables Table T	SUF GROUND WATER PATHWAY OVERLAND/FLOOD WATER PATHWAY OVERLAND/FLOOD GW Mobility Value (HRS Tables 1-10) A-12 A-15 A-16 1 Barium 10,000 1.0F-2.10 1.0 10,000 500 5x/0 A Nickel 10,000 2.0F-5.10 1.0 10,000 500 5x/0 1 Charmium 10,000 2.0F-5.10 1.0 10,000 500 5x/0 1 Lead 10,000 2.0F-5.10 1.0 10,000 500 5x/0	SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SUBSTANCE TOXICITY HAZARDOUS SUBSTANCE TOXICITY GW Mobility Value (HRS Table Table 1-10 and Table Table Table 3-8) 1. DE-2. /O 2.0 50 50 5x/0 /0.000 1. Nickel 10,000 2.05-5.10 1.0 /0.000 500 5x/0 /000	SOURCE SOURCE SOIL SAMPLES A. LANDEL COLLEGE SOIL SAMPLES COLLEGE SOIL SAMPLES GROUND WATER PATHWAY OVERLAND/FLOOD MIGRATION FOOD CHAIN TOX/ Bloac Per (HRS Tables Tables Table Table Table Table 3-8) 1 Barium 10,000 10,000 20,000 11 Condition Tox/ Per (HRS Tables Table	SOURCE SUBSTANCE HAZARDOUS SUBSTANCE TOXICITY GROUND WATER PATHWAY OVERLAND/FLOOD MIGRATION SURFACE WATER PATHW OVERLAND/FLOOD MIGRATION FOOD CHAIN Peru Bloac CHAIN Peru	SOURCE SO	SOURCE S	SOURCE SOURCE HAZARDOUS SUBSTANCE TOXICITY GROUND WATER PATHWAY GW Mobility Value (HRS (HRS (HRS (HRS (HRS (HRS (HRS (HRS	SOURCE HAZARDOUS SUBSTANCE TOXICITY HAZARDOUS SUBSTANCE HAZARDOUS GW Mobility Value Per (HRS HRS HRS HRS HRS HRS HRS HRS HRS HRS

 \Rightarrow

NOTE: The PA Form 2070-2 completed in 1981 indicates that radioactive wastes + DT have been disposed onsite. During a land site visit by the Seorgia- Environmental Protection Division, Union Competing the EDD records indirating radioactive waste disposal w/in the landfill. Union Comp did

Ground Water Observed Release Substances Summary Table

On SI Table 4, list the hazardous substances associated with the site detected in ground water samples for that aquifer. Include only those substances directly observed or with concentrations significantly greater than background levels. Obtain toxicity values from the Superfund Chemical Data Matrix (SCDM). Assign mobility a value of 1 for all observed release substances regardless of the aquifer being evaluated. For each substance, multiply the toxicity by the mobility to obtain the toxicity/mobility factor value; enter the highest toxicity/mobility value for the aquifer in the space provided.

THE THE PARTY OF T

Ground Water Actual Contamination Targets Summary Table

If there is an observed release at a drinking water well, enter each hazardous substance meeting the requirements for an observed release by well and sample ID on SI Table 5 and record the detected concentration. Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For MCL and MCLG benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate the population using the well as a Level I target. If these percentages are less than 100% or all are N/A, evaluate the population using the well as a Level II target for that aquifer.

Sample ID	Hazardous Substance	Bckgrd. Conc.	Toxicity/	References	- c	Letectaly	e in nos	ite aw	'-ssī
Pie ID		55/16.	onny		O	of metals	angle	1	1-ssI Report
		L			- ,	ro OK	< to-Gh	V	
					•	la ciamina	ted -S	3I	
		ļ	-		C	do cumen	Re	eport	
							1	a vialin de	vatere
				<u> </u>	- e	9 A back	eground	0,000	Roite
	Highest Tox	cicity/Mobility	L		sample	was colle	eted tro	n an of	1. I Done
I TABLE 5	GROUND WATER	ACTUAL (CONTAMINATIO)N TARGET	rs Private	well 3 no	depth wa	o prosi	nine to MA
all ID:			levell	l evel II	the prin	ate well.	idditional	ing, the F	is lo cutod
			F0A01 1	FOARI II	_ i-opulation St	e1A80	Heferenci	as	2.4 miles
	Highest Tox GROUND WATER Hazardous Substance	Conc.	Benchmark Conc.	% of	Cancer Risk	% of Cancer			7 northwest
Sample ID	Hazardous Substance	(μg/L)	(MCL or MCLG)	Benchmark	Conc.	Risk Conc.	RID	% of RfD	of The
									- lardfill.
									lardfill, Therefore,
		<u> </u>	<u> </u>						due to
_ _			Highest Percent		Sum of Percents		Sum of Percents		the distance
/ell ID·			'	Level II		erved		es	1 11
				·····				Υ	- private ve
Sample ID	Hazardous Substance	Conc. (µg/L)	Benchmark Conc. (MCL or MCLG)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RiD	% of RiD	from the lardfill and the
] landfill
	<u> </u>								-and the
		+	-					+	depth of the private
	<u></u>		Highest	 	Sum of	 	Sum of	 	- septh of
			Percent	L	Percents .	L	Percents	l	I the pagnar
					. '			nu: 1	well, the
							,	private.	well want
					,		/.	rd conc	well, fe well used loved 45 has private send -551
							130	a.	
								- appro	priate

GROUND WATER PATHWAY GROUND WATER USE DESCRIPTION

Describe Ground Water Use within 4 Mile Describe generalized stratigraphy, aguifers, muni	es of the Site: icipal and private wells
- See attached go	eology
- For GW target is	formation,
see FERDS prin	tout for
See FERDS prin Chatham Country	
	
	
Show Calculations of Ground Water Drink Provide apportionment calculations for blended su County average number of persons per househo	ipply systems.
County average number of persons per nousero	id Nererence
See attack	led
See attack Sheets f	loc
Calculatio	

1 by manicip	al - FER.	DS Printout	10 عوم ر
TOTAL GW DOD. W/IN 4-mile	radius # of wells	population	TOTAL
0-0.25 mile radius			0
0.25-0.5 mile radius	1 Sav. well	- 538	0
0.5-1 mile readius		2,964	7,528-
1 - 2 mile radius	2 Garden City wells		2,964 /
2-3 mile radius	1 Garden Cityonil 1 Devenne Plaza	1,482 2	4,152
3 - 4 mile radion	Live Oak Nassau Woods	583	0,894
	1 Suburbanite Village well	162 - /	1

Darden City Water System

7,410 persons } 5 Yarden City wells 7410 persons ÷ 5 wells = 1,482 persons/well - FERDS printout, PP-2-4

Derenne Plaza Condominiums

86 persons 31 Derenne Plaza well P. 159

Suburbanite Village 486 persons 3 3 wells

FERDS printout,
p. 102
103
104

Nassau Woods 585 junes 3 I well. C-14A

FERDS printout, P. 156 Vire Oak Mobile Home Park

FER 05,

THEFT

1 well - 35 HANNING people

C-14B

Sarannah Water System

150,558 persons + 20 wells = 7,528 persons

•	- FERI	25 printout,
	pp.9. # ofSavannah	Sprintout, -10 wells popular
0-0.25 mile radius	<u> </u>	
0,25 - 0.5 mile radices		
0.5 - 1 mile radius	I well	7,528
1 - 2 mile radius	-3 wells	22,584
2 - 3 mile radius	3 wells	a2,584
3 - 4 mile radices	4 wells	30,112

Private Wells win a 4-mile Radius

radius # of privatewells	County Conv. Factor	POP. SERVED BY PRIVATENCE
0-6.25		
0.25-0.5	2 5 0	_
0.5-1.0	2.59	\bigcirc
1.0-2.0 1		(2.59) 3
2.0-3.0 16		(41,44) 41
3.0-4.0 29	•	(15.11) 75

NOTE: Wells were identified in the SSI Report. The exact locations of the private wells within the radies ring are not known.

* The 1990 M.S. Census Bureau County conversion factor of 2.59 persons-per-household for Chatham County was used to calculate the private well population.

CALENTIAL

GROUND WATER PATHWAY WORKSHEET

LIKELIHOOD OF RELEASE	Score	Type	Data
OBSERVED RELEASE: If sampling data or direct observation	T	T	Refs
support a release to the aquiler, assign a score of 550. Record	ļ	1]
observed release substances on SI Table 4.			
2. POTENTIAL TO RELEASE: Depth to aquifer: 150 feet. If	 	 	
sampling data do not support a release to the aquifer, and the site is	1	·	
in karst terrain or the depth to aquifer is 70 feet or less, assign a	ł	1 1	100
score of 500; otherwise, assign a score of 340. Optionally,		1 7	- 44
evaluate potential to release according to HRS Section 3.	i	1 1	aflached
LR =	0.70	 	geology
cn =		1	attached geology write-up
W. 0.4530			7
TARGETS	· · · · · · · · · · · · · · · · · · ·		
Are any wells part of a blended system? Yes/ No	į	1	1
If yes, attach a page to show apportionment calculations.			i
A OTHER CONTRACTION TARGETS. If a little desidence		1	ì
3. ACTUAL CONTAMINATION TARGETS: If analytical evidence			·
indicates that any target drinking water well for the aquifer has been	·		í
exposed to a hazardous substance from the site, evaluate the			j ,
factor score for the number of people served (SI Table 5).			-1
Level I: people x 10 =			· 1
Level I: people x 10 = Level II: people x 1 = Total =			- .
Leveriipeople x 1 =		1	ł
4. POTENTIAL CONTAMINATION TARGETS: Determine the number			
of people served by drinking water wells for the aquifer or overlying		j-	- FERDS
aquilers that are not exposed to a hazardous substance from the	2 - 4 -	ļ.,	Pyria Tout Tor
site; record the population for each distance category in SI Table 6a	3,766		- FERDS printout for Chatham
or 6b. Sum the population values and multiply by 0.1.		$H \mid$	County
5. NEAREST WELL: Assign a score of 50 for any Level I Actual			/
Contamination Targets for the aquifer or overlying aquifer. Assign a		1	i
score of 45 if there are Level II targets but no Level I targets. If no		1	
Actual Contamination Targets exist, assign the Nearest Well score	ĺ	1	
from SI Table 6a or 6b. If no drinking water wells exist within 4 miles,	\sim	j	}
assign 0.	201	1	\
6. WELLHEAD PROTECTION AREA (WHPA): If any source lies			
within or above a WHPA for the aquifer, or if a ground water		1	
observed release has occurred within a WHPA, assign a score of	i		1000
20; assign 5 if neither condition applies but a WHPA is within 4		ļ.	- 200
miles; otherwise assign 0.	\mathcal{O}	Í	1 centified
7. RESOURCES: Assign a score of 5 if one or more ground water			7,7,25,7
resource applies; assign 0 if none applies.	ļ	ł	
		- 1	
Irrigation (5 acre minimum) of commercial food crops or		1	1
commercial forage crops	.	}	ł
Watering of commercial livestock	j	1	1
Ingredient in commercial food preparation	1	į	l
Supply for commercial aquaculture		1	
 Supply for a major or designated water recreation area, 		1	- none
excluding drinking water use	\wedge	j	foentified
Sum of Targets T=	3786		SSI

SI TABLE 6 (From HRS TABLE 3-12): VALUES FOR POTENTIAL CONTAMINATION GROUND WATER TARGET POPULATIONS

SI Table 6a: Other Than Karst Aquifers

Γ								Populati	on Serve	d by Well	s within Di	stance Cat	egory				
	Distance from Site	Pop.	Nearest Well (choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1000	1001 to 3000	3001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	Pop. Value	Ref.
-	0 to $\frac{1}{4}$ mile		20	4	17	53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455		
	$>\frac{1}{4}$ to $\frac{1}{2}$ mile		18	2	11	33	102	324	1,013	3,233	10,122	32,325	101,213	323,243	1,012,122		
0	$> \frac{1}{2}$ to 1		9 .	1	5	17	52	167	523	1,669	5,224	16,684	52,239	166,835	522,385		
-16	> 1 to 2 miles		5	0.7	3	10	30	94	294	939	2,939	9,385	29,384	93,845	293,842		
	> 2 to 3 miles		3	. 0.5	2	7	21	68	212	678	2,122	6,778	21,222	67,777	212,219		
	>3 to 4 miles		2	0,3	1	4	13	42	131	417	1,306	4,171	13,060	41,709	130,596		
•	Nearest '	Well =													Sum =		

GROUND WATER MIGRATION PATHWAY SCORESHEET

Factor Categories and Factors

Likelihood of Release to an Aquifer	Maximum Value	Value Assigned
Observed Release	550	
Potential to Release		
2a. Containment	. 10	10 3 15
2b. Net Precipitation	10	3_
2c. Depth to Aquifer	5	_3_
2d. Travel Time	35	15
2e. Potential to Release		
[lines $2a \times (2b + 2c + 2d)$]	500	310
Likelihood of Release (higher of		
lines 1 and 2e)	550	20
Waste Characteristics		
Toxicity/Mobility	a	
Hazardous Waste Quantity	a	
Waste Characteristics	100	
Targets		
Nearest Well	50	
Population		
Ba. Level I Concentrations	Ъ	
8b. Level II Concentrations	b	
8c. Potential Contamination	ъ	
8d. Population (lines 8a + 8b + 8c)	b	
Resources	5	
Wellhead Protection Area	20	
Targets (lines 7 + 8d + 9 + 10)	b	
Ground Water Migration Score for an Aqui	<u>fer</u>	
Aquifer Score		
$[(lines 3 x 6 x 11)/82,500]^c$	100	
Ground Water Migration Pathway Score		
Pathway Score (S _{gw}), (highest value from line 12 for all aquifers evaluated) ^C	100	

Amaximum value applies to waste characteristics category. Maximum value not applicable.

CDo not round to nearest integer.

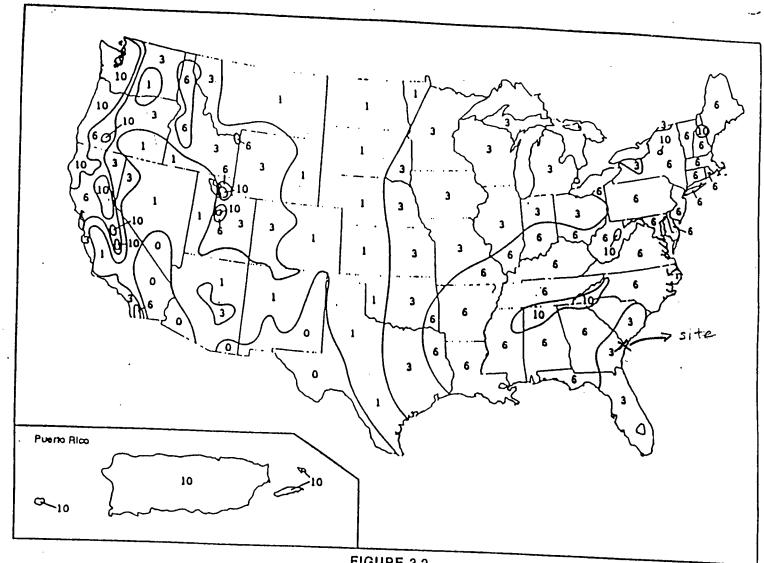


FIGURE 3-2
NET PRECIPITATION FACTOR VALUES

CONFIDENTIAL

TABLE 3-5
DEPTH TO AQUIFER FACTOR VALUES

AQUITER BEING EVALUATED

Thousan
aquifer

Depth To Aquifer (feet)	Assigned Value	system
Less than or equal to 25	5 .	- attached geology
Greater than 25 to 250	(3)	write-up
Greater than 250	1.	

^aUse depth of all layers between the hazardous substances and aquifer. Assign a thickness of 0 feet to any karst aquifer that underlies any portion of the sources at the site.

55 C-16C

TABLE 3-6 HYDRAULIC CONDUCTIVITY OF GEOLOGIC MATERIALS

Type of Macerial	Assigned Hydraulic Conductivity ^a (cm/sec)
Clay; low permeability till (compact unfractured till); shale; unfractured meramorphic and igneous	10-8
rocks	
Silt; loesses; silty clays;	(10 ⁻⁶)
sediments that are predominantly silts; moderately permeable till	ESTIMATED VALUE.
(fine-grained, unconsolidated till, or compact till with some fractures); low permeability limestones	AS 6
and dolomites (no karst); low permeability sandstone; low	
permeability fractured igneous and metamorphic rocks	Dynamac staff geologis
sands; sandy silts; sediments that are predominantly sand; highly	10-4
ermeable till (coarse-grained, neonsolidated or compact and highly	•
ractured); peat; moderately	·
ermeable limestones and dolomites no karst); moderately permeable	
andscone; moderately permeable	
ractured igneous and metamorphic ocks	
ravel; clean sand; highly permeable	10-2

limestones and dolomites

Gravel; clean sand; highly permeable fractured igneous and metamorphic rocks; permeable basalt; karst

^{*}Do not round to nearest integer.

والمستهدين الملاكمة

TABLE 3-7
TRAVEL TIME FACTOR VALUES⁴

	Thickness of Lowest Hydraulic Conductivity Layer(s) b (feet)								
Hydraulic Conductivity (cm/sec)	Greater than 3 to 5	Greater than 5 to 100	Greater than 100 to 500	Greater than 500					
Greater than or equal to 10^{-3}	35	35	35	25					
Less than 10 ⁻³ to 10 ⁻⁵	35	25	15	15					
Less than 10 ⁻⁵ to 10 ⁻⁷	15	15	5.	5					
Less than 10 ⁻⁷	5	5	1	ı					

^{*}If depth to aquifer is 10 feet or less or if, for the interval being evaluated, all layers that underlie a portion of the sources at the site are karst, assign a value of 35.

bConsider only layers at least 3 feet thick. Do not consider layers or portions of layers within the first 10 feet of the depth to the aquifer.

- Metro Waste Gardfill is located

approximately 4 miles southwest

Groundwater Migration Pathway

The Metro Waste Landfill is located in the Coastal Lowlands topographic division Corporation

The Metro Waste Landfill is located in the Coastal Lowlands topographic division Corporation

The Metro Waste Landfill is located in the Coastal Lowlands topographic division Corporation

of the Southeast Coastal Plain physiographic province of Georgia. The terrain in the Coastal Lowlands topographic division consists of barrier islands, marshes, level plains and a series of terraces. Elevation in the coastal lowlands range from sea level to 100 feet above mean sea level (msl) (Ref. 28, p. D6). The elevation at the site is approximately 17 feet (5 meters) above msl (Ref. 1).

Geologic units which underlie the Metro Waste Landfill facility, listed in descending stratigraphic order, include: undifferentiated post-Miocene-age deposits, the Hawthorn Group, the Suwannee Limestone, the Ocala Limestone, the Gosport Sand equivalent, the Lisbon Formation and the Tallahatta Formation (Ref. 28, plate 4, table 2). The undifferentiated post-Miocene-age deposits are composed of sand, gravel, clay and marl (Ref. 28, table 2). These deposits are approximately 50 feet thick in the facility area (Refs. 28, table 2; 29, plate 14). The Hawthorn Group consists of marl, clay, sand and dolomite interbedded with phosphatic sandy clay and sandy dolomite (Ref. 28, table 2). The Hawthorn Group is approximately 100 feet thick (Ref. 29, plate 13). Suwannee Limestone ranges from a fossiliferous limestone to a dense, calcitized, unfossiliferous limestone (Ref. 28, table 2). The Suwannee Limestone is approximately 80 feet thick (Ref. 28, plate 4). The Ocala Limestone consists of a fossiliferous, recrystallized, porous limestone containing large solution The thickness of the Ocala Limestone is cavities (Ref. 28, table 2). approximately 350 feet (Refs. 28, table 2; 29, plate 9). The Gosport Sand equivalent consists of calcareous sand or sandy limestone that is glauconitic, sandy, clayey, fossiliferous marl. The Tallahatta Formation is an interbedded glauconitic sand and shale, that grades to a glauconitic argillaceous and sandy fossiliferous limestone (Ref. 28, table 2). The combined thickness of the Gosport Sand equivalent, the Lisbon Formation and the Tallahatta Formation ranges from 500 to 600 feet (Refs. 28, table 2; 29, plate 7).

There are two major aquifers in the Savannah area: a surficial aquifer and the Floridan Aquifer system. The surficial aquifer is composed of the undifferentiated post-Miocene-age deposits (Ref. 28, plate 4). Groundwater in the surficial aquifer is generally under unconfined conditions, and the water level fluctuates seasonally, corresponding to seasonal variation in precipitation and evaporation. The surficial aquifer is recharged by the infiltration of rainwater, and is generally in communication with water from lakes, streams and marshes (Ref. 28, p. D18).

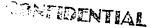
In the Savannah area, the surficial aquifer is separated from the Floridan Aquifer system by the confining beds of the Hawthorn Group. Floridan Aquifer system occurs approximately 150 feet below land surface (bls) in the Savannah area (Ref. 28, plate 4). The Floridan Aquifer system can be divided into upper and lower permeable zones referred to as the Upper and Lower Floridan Aquifers (Refs. 28, p. D16, plate 4; 29, p. B47). The Upper Floridan Aquifer consists of permeable beds of the Suwannee Limestone and the Ocala Limestone (Ref. 28, p. D21, Table 2, plate 4). Secondary permeability, which was developed by the migration of groundwater along bedding planes, joints, fractures and other zones of weakness, has made the Ocala Limestone extremely permeable (Ref. 28, p. D24). In the Savannah area, the Upper Floridan Aquifer consists primarily of three permeable zones separated by locally confining units (Ref. 28, plate 4). The geologic units of the Upper Floridan Aquifer have a combined thickness which ranges from approximately 500 to 600 feet (Ref. 28, plate 4). The Upper and Lower Floridan Aquifers are separated by a middle Eocene-age semiconfining unit (Refs. 28, plate 4; 29, p. B47). The Lower Floridan Aquifer consists of permeable beds in the Gosport Sand equivalent and part of the Lisbon Formation. The Lower Floridan Aquifer is approximately 200 feet thick (Ref. 28, plate 4, table 2). The Floridan Aquifer system is confined below by the lowpermeability beds that occur in the middle of the Lisbon Formation (Refs. 28, table 2; 30, p. 23). In the facility area, the Lower Floridan Aquifer responds to pumping from the Upper Floridan Aquifer. This response is indicated by the similarity, over time, of water levels observed in the Upper and Lower Floridan This suggests that the Upper and Lower Floridan Aquifers are hydrologically connected in the area (Ref. 28, p. D23).

Potable water for the area is supplied by a series of community and municipal wells. The nearest private well is located across the street from the landfill, approximately 300 feet from the landfill (Ref. 27, p. 10). The population using community and municipal wells is shown in Table 4.

- 23. Joseph T. Surowiec, Environmental Specialist, Municipal Solid Waste Control Unit, Municipal Solid Waste Control Program, Georgia Department of Natural Resources, Environmental Protection Division, letter with attachment to C. Russell Gaskill, Executive Officer, Metropolitan Waste and Refuse, Inc., April 29, 1977. Subject: Inspection report dated April 21, 1977.
- 24. Disposal Site Evaluation Report (Landfill) for Metro Waste Landfill, Savannah, Chatham County, Georgia. Inspected by Joseph T. Surowiec, Environmental Specialist, Georgia Department of Natural Resources, Environmental Protection Division, June 22, 1977.
- 25. Disposal Site Evaluation Report (Landfill) for Metro Waste Landfill, Savannah, Chatham County, Georgia. Inspected by Roy Baggett, Environmental Specialist, Georgia Department of Natural Resources, Environmental Protection Division, September 13, 1977.
- 26. Trip Report to Metro Waste Landfill, February 20, 1985. Filed by Johnny Morgan, Environmental Specialist, Georgia Department of Natural Resources, Environmental Protection Division, April 9, 1985.
- 27. NUS Corporation Superfund Division, Final Screening Site Inspection, Phase II Report for Metro Waste Landfill, Savannah, Chatham County, Georgia, Revision O, prepared under TDD No. F4-8809-08 for the Waste Management Division of the EPA (February 4, 1991).
- 28. Richard E. Krause and Robert B. Randolph, <u>Hydrology of the Floridan Aquifer System in Southeast Georgia and Adjacent Parts of Florida and South Carolina</u>, U.S. Geological Survey Professional Paper 1403-D (Washington, D.C.: GPO, 1989) excerpt, 12 pages with attachments.
- 29. James A. Miller, <u>Hydrogeologic Framework of the Floridan Aquifer System in Florida and in Parts of Georgia</u>, <u>Alabama</u>, <u>and South Carolina</u>, U.S. Geological Survey Professional Paper 1403-B, (Washington, D.C.: GPO, 1986) excerpt, 5 pages with attachments.
- 30. Harlan B. Counts and Ellis Donsky <u>Salt-Water Encroachment Geology and Ground-Water Resources of Savannah Area, Georgia and South Carolina, Geological Survey Water-supply Paper 1611 (Washington D.C.: GPO, 1963) excerpt, 6 pages.</u>
- 31. United States Department of Agriculture, Soil Conservation Service, <u>Soil Survey of Bryan and Chatham Counties, Georgia</u> (March, 1974) excerpt, 2 pages with 4 attachments.
- 32. Len Dangerfield, FOIA Coordinator, Water Management Division, United States Environmental Protection Agency, Region IV, letter with attachment to Susan Rusher, Site Manager, Dynamac Corporation, March 31, 1993. Subject: 4-RIN-00834-93.
- 33. U.S. Fish and Wildlife Service, <u>Endangered and Threatened Species of the Southeastern United States</u> (Atlanta, Georgia, 1992), excerpt 17 pages.
- 34. U.S. Environmental Protection Agency, <u>Graphical Exposure Modeling System</u> (GEMS) Data Base, compiled from the U.S. Bureau of the Census data (1980).
- 35. U.S. Department of Commerce, Proof Copy of table generated for 1990 CPH-1: Summary Population and Housing Characteristics, issued by Bureau of the Census (April 1991), excerpt.
- 36. U.S. Department of the Interior, Fish and Wildlife Service, National Wetlands Inventory map for Garden City, Georgia (1981). 1 map.

VALUES FOR POTENTIAL CONTAMINATION GROUND WATER SI TABLE 6 (From HRS TABLE 3-12): TARGET POPULATIONS (continued)

SI Table 6b: Karst Aqu	ifers
------------------------	-------


[Populati	on Serve	d by Well	s within Di	stance Cat	egory				
VATE :LL ULATIO	y Distance from Site	Рор.	Nearest Well (choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1000	1001 to 3000	3001 10 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	Pop. Value	Ref.
_	0 to $\frac{1}{4}$ mile	0	20	4 :	17	53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455	0	
	$> \frac{1}{4}$ to $\frac{1}{2}$ mile	0	20	2	11	33	102	324	1,013	3,233	10,122	32,325	101,213	323,243	1,012,122	0	
0	> 1/2 to 1	7,528	20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227	2,607	
37		2,964	20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227	817	
+1	> 2 to 3 miles	24, 18	20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227	8,163	
15	>3 to 4 miles	30,894	20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227	26,068	
	Nearest	Well =	20						•						Sum =	37,655	

Nearest Well = QO

- I louidan a quifer 5 yetem valuated

The SSI Report identified a private well of or all population of the landfill (SSI p.9). This aprivate well of one private well as multiplied by the 1990 U.S. Census Bureau population per 203-mile radius susehold value of 2.59 persons to obtain the value of 24,152 from the FERDs printout

102-104, 156, 159, 196 for all populations the exception addition of one private well to the

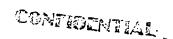
GROUND WATER PATHWAY WORKSHEET (concluded)

WA	STE CHARACTERISTICS			Score	Data Type	Does not Apply	
8.	If any Actual Contamination Tan overlying aquifers, assign the ca quantity score or a score of 100 Contamination Targets exist, as quantity score calculated for sou ground water.	alculated hazardous wa , whichever is greater; sign the hazardous wa	aste if no Actual ste	10	-	See C- of	page workstad
9.	Assign the highest ground water Table 3 or 4.	r toxicity/mobility value	from SI	100			
10.	Multiply the ground water toxicity quantity scores. Assign the Was table below: (from HRS Table 2: Product	te Characteristics scor					
			WC =	6			

Multiply LR by T and by WC. Divide the product by 82,500 to obtain the ground water pathway score for each aquifer. Select the highest aquifer score. If the pathway score is greater than 100, assign 100.

GROUND WATER PATHWAY SCORE:

LR X T X WC 82,500


57.82

$$\frac{210 \times 3,786 \times 6}{82,500} = 57.82$$

SI TABLE 7:	SURFACE WATER	OBSERVE	D RELEASE	SUBSTAN	CES				
	and concentration	Bckgrd.	Toxicity/	Toxicity/ Persis./	Ecotoxicity/ Persis/				
Sample ID	Hazardous Substance	Conc.	Persistence	Bloaccum	Ecobloaccum	References		∞ ed	1: 4
							-N	o our	ames
								07 su	rface
								ten	S and
				·			(
								colle	ted fo
						<i>#</i>	exempial	L du i	
	Hig	hest Values				<u> </u>	water		
SI TABLE 8:	SURFACE WATER	DRINKING	WATER ACT	TUAL CON	CAMINATION	TARGETS	body	SI	,
	Samala Tuan		Lou	iol l	t avat ti	Deculation Consu		o sed or ou water collection of J	- SI
лівке ID:	Sample Type	············		/BII	F9A91 II	Population Serve	dHelete	nces	top
•		Conc.	Benchmark Conc.	% ol	Cancer Risk	% of Cancer] '
Sample ID	Hazardous Substance	(J19/L)	(MCL or MCLG)	Benchmark	Conc.	Risk Conc.	RID	% of RID	- no
									OR
			 	 		-			
									Sur
	•		Highest Percent		Sum of Percents	1	Sum of Percents		Suc
lataka ID:	Sample Type		ه ا	vall	•	Population Sons	d Dofore		•
III ake 10	Outilpid Type			····			1 161616)IIC83	
	1	Conc.	Benchmark Conc.	% 01	Cancer Risk	% of Cancer			9554
Sample ID	Hazardous Substance	(jig/L)	(MCL or MCLG)	Benchmark	Conc.	Risk Conc.	RIO	% of RID	due
									1 H
				 	<u> </u>			 -	dist
							 		
•	•		Highest Percent	ļ	Sum of v		Sum of Percents		Yo
					4		4		SW
									_
								٠, ٠	3000
	•								Leet

SURFACE WATER PATHWAY

Sketch of the Surface Water Migration Route: Label all surface water bodies. Include runoff route and drainage direction, probable point of entry, and 15-mile target distance limit. Mark sample locations, intakes, fisheries, and sensitive environments. Indicate flow directions, tidal influence, and rate. Tyber National Wildlife Refuge Savannah River 15-mile surface water - Sarannah Riser is a documented

SURFACE WATER PATHWAY

Surface Water Observed Release Substances Summary Table

On SI Table 7, list the hazardous substances detected in surface water samples for the watershed, which can be attributed to the site. Include only those substances in observed releases (direct observation) or with concentration levels significantly above background levels. Obtain toxicity, persistence, bioaccumulation potential, and ecotoxicity values from SCDM. Enter the highest toxicity/persistence, toxicity/persistence/bioaccumulation, and ecotoxicity/persistence/ecobioaccumulation values in the spaces provided.

- TP = Toxicity x Persistence
- TPB = TP x bioaccumulation
- ETPB = EP x bioaccumulation (EP = ecotoxicity x persistence)

Drinking Water Actual Contamination Targets Summary Table

For an observed release at or beyond a drinking water intake, on SI Table 8 enter each hazardous substance by sample ID and the detected concentration. For surface water sediment samples detecting a hazardous substance at or beyond an intake, evaluate the intake as Level II contamination. Obtain benchmark, cancer risk, and reference dose concentrations for each substance from SCDM. For MCL and MCLG benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages of the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate the population served by the intake as a Level I target. If the percentages are less than 100% or all are N/A, evaluate the population served by the intake as a Level II target.

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT WORKSHEET

_0	KELIHOOD OF RELEASE- VERLAND/FLOOD MIGRATION		Score	Data Type	Refs	
	OBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershe of 550. Record observed release substances on	ed, assign a score SI Table 7.	0			SI
2.	POTENTIAL TO RELEASE: Distance to surface If sampling data do not support a release to surface watershed, use the table below to assign a score below based on distance to surface water and flo	ce water in the from the table			5.0	•
1	Distance to surface water <2500 feet	500			ļ	
ł	Distance to surface water >2500 feet, and:					
1	Site in annual or 10-yr floodplain	500				
ł	Site in 100-yr floodplain	400			1	
	Site in 500-yr floodplain	300		١ .		
	Site outside 500-yr floodplain	100		- W	ree	1 .
	Optionally, evaluate surface water potential to releace ording to HRS Section 4.1.2.1.2	ase	•	d	attac	to
			200		rel	lus
		LR =	200		na	lus
						-
116	TELIHOOD OF DELEASE			Deta		
	ELIHOOD OF RELEASE OWND WATER TO SURFACE WATER MIG	RATION	Score	Data Type	Refs	
GR	OUND WATER TO SURFACE WATER MIG		Score	Data Type	Refs	
	OUND WATER TO SURFACE WATER MIG OBSERVED RELEASE: If sampling data or direct	observation	Score	- +	Refs	
GR	OUND WATER TO SURFACE WATER MIG	observation d, assign a score	Score	- +	Refs	
GR 1.	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershed of 550. Record observed release substances on Standard Control of Standard Con	observation d, assign a score SI Table 7.	S∞re	- +	Refs	
GR 1.	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershed of 550. Record observed release substances on STE: Evaluate ground water to surface water migrating.	observation d, assign a score SI Table 7. on only for a	Score	- +	Refs	
GR 1.	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershed of 550. Record observed release substances on Standard Control of Standard Con	observation d, assign a score SI Table 7. on only for a	Score	- +	Refs	
GR 1. NO	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershee of 550. Record observed release substances on STE: Evaluate ground water to surface water migratic surface water body that meets all of the following of the surface water body that meets all of the surface water body the surface water body that meets all of the surface water body the surface water body the surface water body that meets all of the surface water body the surface water body the surface water body that water body the surface wat	observation d, assign a score SI Table 7. on only for a conditions:	Score	- +	Refs	
GR 1. NO	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershed of 550. Record observed release substances on STE: Evaluate ground water to surface water migratic surface water body that meets all of the following of A portion of the surface water is within 1 mile of site.	observation d, assign a score SI Table 7. on only for a conditions:	Score	- +	Refs	
1. NO	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershee of 550. Record observed release substances on STE: Evaluate ground water to surface water migratic surface water body that meets all of the following of A portion of the surface water is within 1 mile of site a containment factor greater than 0.	observation d, assign a score SI Table 7. on only for a conditions: e sources having	Score	- +	Refs	
1. NO	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershed of 550. Record observed release substances on STE: Evaluate ground water to surface water migratic surface water body that meets all of the following of A portion of the surface water is within 1 mile of site a containment factor greater than 0. No aquifer discontinuity is established between the	observation d, assign a score SI Table 7. on only for a conditions: e sources having	Score	- +	Refs	
1. NO 1) 2)	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershee of 550. Record observed release substances on STE: Evaluate ground water to surface water migratic surface water body that meets all of the following of A portion of the surface water is within 1 mile of site a containment factor greater than 0. No aquifer discontinuity is established between the above portion of the surface water body. The top of the uppermost aquifer is at or above the	observation d, assign a score SI Table 7. on only for a conditions: e sources having e source and the	Score	- +	Refs	
1) 2) 3)	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershed of 550. Record observed release substances on STE: Evaluate ground water to surface water migratic surface water body that meets all of the following of A portion of the surface water is within 1 mile of site a containment factor greater than 0. No aquifer discontinuity is established between the above portion of the surface water body. The top of the uppermost aquifer is at or above the surface water.	observation d, assign a score SI Table 7. on only for a conditions: e sources having e source and the	Score	- +	Refs	
1) 2) 3) Elev	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershed of 550. Record observed release substances on STE: Evaluate ground water to surface water migratic surface water body that meets all of the following of A portion of the surface water is within 1 mile of site a containment factor greater than 0. No aquifer discontinuity is established between the above portion of the surface water body. The top of the uppermost aquifer is at or above the surface water.	observation d, assign a score SI Table 7. on only for a conditions: e sources having e source and the	Score	- +	Refs	
1) 2) 3) Elev	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershed of 550. Record observed release substances on STE: Evaluate ground water to surface water migratic surface water body that meets all of the following of A portion of the surface water is within 1 mile of site a containment factor greater than 0. No aquifer discontinuity is established between the above portion of the surface water body. The top of the uppermost aquifer is at or above the surface water.	observation d, assign a score SI Table 7. on only for a conditions: e sources having e source and the	Score	- +	Refs	
NO 1) 2) Eleveled	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershed of 550. Record observed release substances on STE: Evaluate ground water to surface water migratic surface water body that meets all of the following of A portion of the surface water is within 1 mile of site a containment factor greater than 0. No aquifer discontinuity is established between the above portion of the surface water body. The top of the uppermost aquifer is at or above the surface water.	observation d, assign a score SI Table 7. on only for a conditions: e sources having e source and the e bottom of the	Score	- +	Refs	
NO 1) 2) Eleveled	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershed of 550. Record observed release substances on STE: Evaluate ground water to surface water migratic surface water body that meets all of the following of A portion of the surface water is within 1 mile of site a containment factor greater than 0. No aquifer discontinuity is established between the above portion of the surface water body. The top of the uppermost aquifer is at or above the surface water. Vation of top of uppermost aquifer vation of bottom of surface water body.	observation d, assign a score SI Table 7. on only for a conditions: e sources having e source and the e bottom of the	Score	- +	Refs	
NO 1) 2) Eleveled	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershed of 550. Record observed release substances on STE: Evaluate ground water to surface water migratic surface water body that meets all of the following of A portion of the surface water is within 1 mile of site a containment factor greater than 0. No aquifer discontinuity is established between the above portion of the surface water body. The top of the uppermost aquifer is at or above the surface water. Vation of top of uppermost aquifer vation of bottom of surface water body. POTENTIAL TO BELEASE: Use the ground water release. Optionally, evaluate surface water potenti	observation d, assign a score SI Table 7. on only for a conditions: e sources having e source and the e bottom of the	Score	- +	Refs	
NO 1) 2) Eleveled	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershed of 550. Record observed release substances on STE: Evaluate ground water to surface water migratic surface water body that meets all of the following of A portion of the surface water is within 1 mile of site a containment factor greater than 0. No aquifer discontinuity is established between the above portion of the surface water body. The top of the uppermost aquifer is at or above the surface water. Vation of top of uppermost aquifer vation of bottom of surface water body.	observation d, assign a score SI Table 7. on only for a conditions: e sources having e source and the e bottom of the	Score	- +	Refs	
NO 1) 2) Eleveled	OUND WATER TO SURFACE WATER MIGOBSERVED RELEASE: If sampling data or direct support a release to surface water in the watershed of 550. Record observed release substances on STE: Evaluate ground water to surface water migratic surface water body that meets all of the following of A portion of the surface water is within 1 mile of site a containment factor greater than 0. No aquifer discontinuity is established between the above portion of the surface water body. The top of the uppermost aquifer is at or above the surface water. Vation of top of uppermost aquifer vation of bottom of surface water body. POTENTIAL TO BELEASE: Use the ground water release. Optionally, evaluate surface water potenti	observation d, assign a score SI Table 7. on only for a conditions: e sources having e source and the e bottom of the	Score	- +	Refs	

The state of the s

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT WORKSHEET (CONTINUED)

		Data		
DRINKING WATER THREAT TARGETS	Score_	Type	Refs	
Record the water body type, flow, and number of people served by each drinking water intake within the target distance limit in the watershed. If there is no drinking water intake within the target distance limit, assign 0 to factors 3, 4, and 5.				
Intake Name Water Body Type Flow People Served Are any intakes part of a blended system? Yes No	_	no Wat	sur m	face
If yes, attach a page to show apportionment calculations.			ida	tified
3. ACTUAL CONTAMINATION TARGETS: If analytical evidence indicates a drinking water intake has been exposed to a hazardous substance from the site, list the intake name and evaluate the factor score for the drinking water population (SI Table 8).		л́n	icien T	e SI,
Level I: people x 10 = Level II: people x 1 = Total =	0			, . 🔾
4. POTENTIAL CONTAMINATION TARGETS: Determine the number of people served by drinking water intakes for the watershed that have not been exposed to a hazardous substance from the site. Assign the population values from SI Table 9. Sum the values and multiply by 0.1.				
5. NEAREST INTAKE: Assign a score of 50 for any Level I Actual Contamination Drinking Water Targets for the watershed. Assign a score of 45 if there are Level II targets for the watershed, but no Level I targets. If no Actual Contamination Drinking Water Targets exist, assign a score for the intake nearest the PPE from SI Table 9. If no drinking water intakes exist, assign 0.	7			
 6. RESOURCES: Assign a score of 5 if one or more surface water resource applies; assign 0 if none applies. Irrigation (5 acre minimum) of commercial food crops or commercial forage crops Watering of commercial livestock Ingredient in commercial food preparation Major or designated water recreation area, excluding drinking water use 	5			
SUM OF TARGETS T=	\bigcirc			

TABLE 4-1 SURFACE WATER OVERLAND/FLOOD MIGRATION COMPONENT SCORESHEET

ctor Categories and Factors	Maximum.Value	Value Assigned
INKING WATER THREAT		
Likelihood of Release		
. Observed Release	550	
Potential to Release by		
Overland Flow		•
2a. Containment	10	10
2b. Runoff	25	7
2c. Distance to Surface Water	25	6
2d. Potential to Release by Overland Flow		
(lines 2a x [2b + 2c])	500	<u> 130</u>
Potential to Release by Flood		-1
3a. Containment (Flood)	10	10
3b. Flood Frequency	50	<u> 19</u>
3c. Potential to Release		
by Flood (lines 3a x 3b)	500	70
Potential to Release		
(lines 2d + 3c, subject to		
a maximum of 500)	500	200
Likelihood of Release		
(higher of lines 1 and 4)	550	200
Waste Characteristics		
Toxicity/Persistence	a /	
Hazardous Wasse Quantity	-	
Waste Characteristics	100	
waste onaracterisates	/	
Targets		
Nearest Intake	50	
Population		
10a. Level I Concentrations	ь	
10b. Level II Concentrations	, b	
10c. Potential Contamination	\ <u>`</u>	
10d. Population		
(lines 10a + 10b + 10c)		
Resources	. b >	$\overline{}$
nesources.	3	

TABLE 4-3 DRAINAGE AREA VALUES

Drainage Area (acres)	Assigned Value	
Less than 50	1	
50 co 250	2	
Greater than 250 to 1,000	3-topo	- maps
Greater than 1,000	4	/

TABLE 4-4 SOIL GROUP DESIGNATIONS

Surface Soil Description	Soil Group Designation
Coarse-textured soils with high infiltration rates (for example, sands, loamy sands)	A
Medium-textured soils with moderate infiltration rates (for example, sandy loams, loams)	B
Moderately fine-textured soils with low infiltration rates (for example, silty loams, silts, sandy clay loams)	c .
Fine-textured soils with very low infiltration rates (for example, clays, sandy clays, silty clay loams, clay loams, silty clays); or impermeable surfaces (for example, pavement)	D

SI Report, p. 1

TABLE 4-5
RAINFALL/RUNOFF VALUES

2-Year, 24-Hour		Soil Group Designation							
Rainfall (inches)	A	В	С	D					
Less than 1.0	0	o	2	3					
1.0 to less than 1.5	0	1	2	3					
1.5 co less than 2.0	0	2	3	4					
2.0 co less than 2.5	1	2	3	. 4					
2.5 to less than 3.0	2	3	4	4					
.O to less than 3.5	2	3	4	5					
.5 or greater	3	(4)	5	6					

- 2- year 24-hour rainfall map

CONFIDENTIAL

TABLE 4-6
RUNOFF FACTOR VALUES

Drainage			Rainfa	11/Ru	noff Val	lue	
Area Value	0	1	2	3	4	5	6
1	0	0	0	1	1	1	1
2	0	. 0	1	1	2	3	4
· 3	0	0	1	3	7	11	15
4	0	1	2	7	17	25	25

TABLE 4-7
DISTANCE TO SURFACE WATER FACTOR VALUES

Distance	Assigned Value
Less than 100 feet	25
100 feet to 500 feet	. 20
Greater than 500 feet to 1,000 feet	16
Greater than 1,000 feet to 2,500 feet	9
Greater than 2,500 feet to 1.5 miles	(6)
reater than 1.5 miles to 2 miles	3

TABLE 4-9 FLOOD FREQUENCY FACTOR VALUES

Floodplain Category	Assigned Value
Source floods annually	50
Source in 10-year floodplain	50
Source in 100-year floodplain	25
Source in 500-year floodplain	7
None of above	0

- assumed - no floodplain map available

SI TABLE 9 (From HRS Table 4-14): DILUTION-WEIGHTED POPULATION VALUES FOR POTENTIAL CONTAMINATION FOR SURFACE WATER MIGRATION PATHWAY

				Number of people								
Type of Surface Water Body	Pop.	Nearest Intake	0	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	Pop. Value
Minimal Stream (<10 cfs)		20	0	4	17	53	164	522	1,633	5,214	16,325	
Small to moderate stream (10 to 100 cfs)		2	0	0.4	2	5	16	52	163	521	1,633	
Moderate to large stream (> 100 to 1,000 cfs)		0	0	0.04	0.2	0.5	2	5	16	52	163	
Large Stream to river (>1,000 to 10,000 cfs)		0	0	0.004	0.02	0.05	0.2	0.5	2	5	16	
Large River (> 10,000 to 100,000 cfs)		0	0	0	0.002	0.005	0.02	0.05	0.2	0.5	2 6	
Very Large River (>100,000 cfs)		0	0	0	0	0.001	0.002	0.005	0.02	0.05	0.2	
Shallow ocean zone or Great Lake (depth < 20 feet)		0	0	0	0.002	0.005	0.02	0.05	0,2	0.5	2	
Moderate ocean zone or Great Lake (Depth 20 to 200 feet)		0	0	0	0	0.001	0.002	0.005	0.02	0.05	0.2	
Deep ocean zone or Great Lake (depth > 200 feet)		0	0	0	0	0	0.001	0.003	0.008	0.03	0.08	
3-mile mixing zone in quiet flowing river (≥ 10 cfs)		10	0	2	9	26	82	261	817	2,607	8,163	
Nearest I	ntake =			-							Sum =	

References	

5-25

SURFACE WATER PATHWAY

Human Food Chain Actual Contamination Targets Summary Table

On SI Table 10, list the hazardous substances detected in sediment, aqueous, sessile benthic organism tissue, or fish tissue samples (taken from fish caught within the boundaries of the observed release) by sample ID and concentration. Evaluate fisheries within the boundaries of observed releases detected by sediment or aqueous samples as Level II, if at least one observed release substance has a bioaccumulation potential factor value of 500 or greater (see SI Table 7). Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For FDAAL benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate this portion of the fishery as subject to Level I concentrations. If the percentages are less than 100% or all are N/A, evaluate the fishery as a Level II target.

Sensitive Environment Actual Contamination Targets Summary Table

On SI Table 11, list each hazardous substance detected in aqueous or sediment samples at or beyond wetlands or a surface water sensitive environment by sample ID. Record the concentration. If contaminated sediments or tissues are detected at or beyond a sensitive environment, evaluate the sensitive environment as Level II. Obtain benchmark concentrations from SCDM. For AWQC/AALAC benchmarks, determine the highest percentage of benchmark of the substances detected in aqueous samples. If benchmark concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage equals or exceeds 100%, evaluate that part of the sensitive environment subject to Level I concentrations. If the percentage is less than 100%, or all are N/A, evaluate the sensitive environment as Level II.

	Number of People							
Type of Surface Water Bodyb	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,001 to 3,000,000	3,000,001 to 10,000,000			
Minimal stream (< 10 cfs)	52,'137	163,246	521,360	1,632,455	5,213,590			
Small to moderate stream (10 to 100 cfs)	5,214	16,325	52,136	163,245	521,359			
Moderate to large stream (> 100 to 1,000 cfs)	521	1,633	5,214	16,325	52,136			
Large stream to river (> 1,000 to 10,000 cfs)	52	163	521	1,632	5,214			
Large river (> 10,000 to 100,000 cfs)	5	16	52	163	521			
Very large river (> 100,000 cfs)	0.5	2	5	16	52			
Shallow ocean zone or Great Lake (depth < 20 feet)	5	16	52	163	521			
Moderate ocean zone or Great Lake (depth 20 to 200 feet)	0.5	2	5	16	52			
Deep zone or Great Lake (depth > 200 feet)	0.3	1	3	8	26			
3-mile mixing zone in quiet flowing river (≥ 10 cfs)	26,068	81,623	260,680	816,227	2,606,79			

^aRound the number of people to nearest integer. Do not round the assigned dilutionweighted population value to nearest integer.

bTreat each lake as a separate type of water body and assign it a dilution-weighted population value using the surface water body type with the same dilution weight from Table 4-13 as the lake. If drinking water is withdrawn from coastal tidal water or the ocean, assign a dilution-weighted population value to it using the surface water body type with the same dilution weight from Table 4-13 as the coastal tidal water or the ocean zone.

Conc. (mg/kg) Highest Percent ONMENT ACTUAL CO e Type Conc (µg/L) Benchmark Concentration (AWQC or AALAC)	DITAMINATIO		Level II E	Environment Value	
Percent ONMENT ACTUAL CO e Type Benchmark Concentration (AWQC or AALAC)	Level I	Percents ON TARGETS	Level II E	Percents SHED Environment Value	•
Percent ONMENT ACTUAL CO e Type Benchmark Concentration (AWQC or AALAC)	Level I	Percents ON TARGETS	Level II E	Percents SHED Environment Value	•
Benchmark Concentration (AWQC or (µg/L) AALAC)	Level I		Level II E	Environment Value	•
Conc (AWQC or AALAC)		References	-n	o Dufar ater or e	e se diment
			- W	ater or e	xdiment
	 		-	1	11 1
,Highest Percent			\otimes	apples col	lected
le Туре	Level	I	Level II E	Environment Value	 ,
Conc (AWQC or	% of	References		perennia	l surfa
			-	uater bo	dy
Highest Percent			- -	-55I	
	Benchmark Concentration (AWQC or AALAC)	Benchmark Concentration (AWQC or % of Benchmark Highest	Benchmark Concentration (AWQC or AALAC) Highest Percent Level I Benchmark References	Experimental Level II Level I	Benchmark Concentration (AWQC or AALAC) Benchmark References Highest

CONTIDENTIAL

SURFACE WATER PATHWAY (continued) HUMAN FOOD CHAIN THREAT WORKSHEET

HUMAN FOOD CHAIN THREAT T	ARGETS	Score	Type	Refs
Record the water body type and fle target distance limit. If there is no distance limit, assign a score of 0 a	ow for each fishery within the fishery within the target	000.0	1,750	Heis
Fishery Name Sayanna Water Body	Ver Flow 10,000 - cfs			. 1
			1	
Species River Production Species Production	lbs/yr			•
SpeciesProduction	los/y/		1	•
Fishery Name Water Body	Flowcfs	•		·
Species Production	· lbs/vr	•	ر ا	الما
Species Production_ Species Production_	lbs/yr			Rushan
Fishery Name Water Body	- 11			teleson
On a fact	(5-4-4)]	9/15/92
Species Production_ Species Production_	lbs/yr]	- Stream
SpeciesProduction_	105/y1		1	flow
FOOD CHAIN INDIVIDUAL 7. ACTUAL CONTAMINATION FISHE	DIEC.		_	Harrigan
7. ACTUAL CONTAMINATION FIGHE	nies.		1 1	Telecon
If analytical evidence indicates that a hazardous substance with a bioac or equal to 500 (SI Table 10), assign Level I fishery. Assign 45 if there is I fishery.	cumulation factor greater than a score of 50 if there is a			Harrigan telecon 5/0/94 -fishing
8. POTENTIAL CONTAMINATION FIS	HERIES:			
If there is a release of a substance we greater than or equal to 500 to a way within the target distance limit, but the fisheries, assign a score of 20. If there is no observed release to the for potential contamination fisheries the lowest flow at all fisheries within	tershed containing fisheries here are no Level I or Level II e watershed, assign a value from the table below using			
Lowest Flow	FCI Value		1	ĺ
Lowest Flow	20	,	1	
10 to 100 cfs	2			1
>100 cfs, coastal tidal waters,	 	,		1
oceans, or Great Lakes		•		
3-mile mixing zone in quiet flowing river	10			
	FCI Value =			
	SUM OF TARGETS T =	\circ		

CANTILLATION

SURFACE WATER PATHWAY (continued) ENVIRONMENTAL THREAT WORKSHEET

When measuring length of wetlands that are located on both sides of a surface water body, sum both frontage lengths. For a sensitive environment that is more than one type, assign a value for each type.

ENVIF	RONMENTA	AL TH	REAT TARGE	TS		-	Score	Data Type	Refs	
Re se	cord the wat nsitive environ here is no se	ter body onment ensitive	type and flow for within the target of environment with the bottom of the	each so distance in the ta	(see SI	Table 12).				
nviron	ment Name		Water Body Type	·	Flo	W	ol l	}	· .	
						cfs	1			Í
						cts cts	1	ł -	1	
						cfs	jj	j		
				····		cfs				
san env site	npling data o rironment ha , record this	r direct o s been o informat	ON SENSITIVE I observation indic exposed to a haz ion on SI Table 1 nt (SI Tables 13	ate any ardous 1, and a	sensitive substan Issign a	e ce from the				
nvironn	nent Name		nment Type and SI Tables 13 & 14)	Muttiplic Level I, Level II	1 for	Product				
			数	x	:					
				J						
				X						
<u>-</u>				x	=					
				x	=					
	TENTIN OO	. 17 . 1 . 1 . 1	TATION OF LOT	0.45 50.0		Sum =	\mathcal{O}		<u> </u>	14
). PO	I EN HAL CO	N I AMII	NATION SENSIT	IVE EN	MONM	ENIS:			4.5.	11840
w	Dilution Weig (SI Table 12)	ht	Environment Type Value (SI Tables	e and	Pot. Cont.	Product		'	Jervia	Fish 8 es, Red 199
					Com.	00075		1	Tybed	
cfs	,000	X	7.5	x	0.1 =	. 00075) . 		Isla	nd
cfs		x		_ x	0.1 =			,		
oto					0.1	·		7	Jation	1 A 1
cfs		<u> </u>		X	0.1 =				Wild	
cfs		X		X	0.1 =				Ref	ige ,
cfs		x		x	0.1 =	Sum =	.00075	\Box		map)
		· 				T -	0			
ÓTE	: The	N	arges of or endarge	serv	ral	feder	ally and	04/-	state	- desig
,										
reat	ened a	nd/c	or endange	red	op	sies	00000	. De	1100	. , ,

none of these species were located,

CONTROLING VI

SI TABLE 13 (HRS TABLE 4-23): SURFACE WATER AND AIR SENSITIVE ENVIRONMENTS VALUES

·	ASSIGNED
SENSITIVE ENVIRONMENT	VALUE
Critical habitat for Federal designated endangered or threatened species	100
Marine Sanctuary	1
National Park	
Designated Federal Wilderness Area	
Ecologically important areas identified under the Coastal Zone Wilderness Act] .
Sensitive Areas identified under the National Estuary Program or Near Coastal	1
Water Program of the Clean Water Act	
Critical Areas identified under the Clean Lakes Program of the Clean Water Act	1
(subareas in lakes or entire small lakes)	1
National Monument (air pathway only)	l l
National Seashore Recreation Area	[
National Lakeshore Recreation Area	
Habitat known to be used by Federal designated or proposed endangered or threatened species	75
National Preserve	
National or State Wildlife Refuge	,
Unit of Coastal Barrier Resources System	
Coastal Barrier (undeveloped)	ŀ
Federal land designated for the protection of natural ecosystems	
Administratively Proposed Federal Wilderness Area	
Spawning areas critical for the maintenance of fish/shellfish species within a	į
river system, bay, or estuary	- [
Migratory pathways and feeding areas critical for the maintenance of	
anadromous fish species within river reaches or areas in lakes or coastal	
tidal waters in which the fish spend extended periods of time	.
Terrestrial areas utilized by large or dense aggregations of vertebrate animals	İ
(semi-aquatic foragers) for breeding	
National river reach designated as recreational	
Habitat known to be used by State designated endangered or threatened species	50
Habitat known to be used by a species under review as to its Federal endangered	
or threatened status	1
Coastal Barrier (partially developed)	
Federally designated Scenic or Wild River	·
State land designated for wildlife or game management	25
State designated Scenic or Wild River	Į.
State designated Natural Area	1
Particular areas, relatively small in size, important to maintenance of unique biotic communities	
State designated areas for the protection of maintenance of aquatic life under the Clean Water	5
Act	
Wetlands See SI Table 14 (Surface Water Pathway) or SI Table 23 (Air Pathway)	

SI TABLE 14 (HRS TABLE 4-24): SURFACE WATER WETLANDS FRONTAGE VALUES

Total Length of Wetlands	Assigned Value	
Less than 0.1 mile	. 0	
0.1 to 1 mile	25	
Greater than 1 to 2 miles	50	
Greater than 2 to 3 miles	75	
Greater than 3 to 4 miles	100	
Greater than 4 to 8 miles	150	
Greater than 8 to 12 miles	250	
Greater than 12 to 16 miles	350	
Greater than 16 to 20 miles	450	
Greater than 20 miles	500	

SI TABLE 12 (HRS Table 4-13): SURFACE WATER DILUTION WEIGHTS

Type of Surface Water Body						
Descriptor	Flow Characteristics	Weight				
Minimal stream	< 10 cfs	1				
Small to moderate stream	10 to 100 cfs	0.1				
Moderate to large stream	> 100 to 1,000 cfs	0.01				
Large stream to river	> 1,000 to 10,000 cfs	0.001				
Large river	> 10,000 to 100,000 cfs	0.0001				
Very large river	> 100,000 cfs	0.00001				
Coastal tidal waters	Flow not applicable; depth not applicable	0.001-				
Shallow ocean zone or Great Lake	Flow not applicable; depth less than 20 feet	0.001-				
Moderate depth ocean zone or Great Lake	Flow not applicable; depth 20 to 200 feet	0.0001				
Deep ocean zone or Great Lake	Flow not applicable; depth greater than 200 feet	0.000005				
3-mile mixing zone in quiet flowing river	10 cfs or greater	0.5				

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

Section 1

WASTE CHARACT	Score						
14: If an Actual Cont chain, or environ the calculated ha whichever is great	ed, assign core of 100,						
15. Assign the highes	value from SI	Table 7	(observed	rele	ease) or SI		
Table 3 (no observation fa	ved release) loi closs below M	r tne na Intioly e	zardous su	DSU	ance waster		
hazardous waste							
characteristics sco							
	Substance Vale	-	HWQ		Product	WC Score (fro (Max lmum-of-	
Drinking Water Threat	Substance vali	n a	HWQ.			A	Max 7 100
Toxicity/Persistence	10,000	7 x	10	-	18/x/5	18	
Food Chain Threat	,					H	wax + 1000
Toxicity/Persistence Bioaccumulation	5 × 10)′ _x	10	_	5×108.	100	H
Environmental Threat	<u> </u>			_			MIG- = 1000
Ecotoxicity/Persistence/	5×10	6	10		5x 10	56	Ĭ
E∞bioaœumulation	0 2,70	x		-	0 × / 0		
Product	 		WC Score	1			-
0		 	0	1			ľ
>0 to <10			1	}			
10 to <100			2 3	ł	1		j
100 to <1,000 1,000 to < 10			3 6	ł			ł
10,000 to <18			10				
1E + 05 to <1			18				
1E + 06 to <1			32				
1E + 07 to <11 1E + 08 to <1			56 100				1
1E + 09 to <1			180				
1E + 10 to <11	- · · · -		320	1	• •		
1E + 11 to <11	- ·		560				ŀ
1E + 12 or gre	ater		1000		:		Ì
		\					

SURFACE WATER PATHWAY THREAT SCORES

Threat	Likelihood of Release (LR) Score	Targets (T) S∞re	Pathway Waste Characteristics (WC) Score (determined above)	Threat Score <u>LR x T x WC</u> 82,500
Drinking Water	200	5	1.8	(maximum of 100)
Human Food Chain	200	0	100	(maximum of 100)
Environmental	200	O.00075	56	(maximum of 60)

SURFACE WATER PATHWAY SCORE (Drinking Water Threat + Human Food Chain Threat + Environmental Threat)

(maximum of 100)

O. 2.2

SOIL EXPOSURE PATHWAY

If there is no observed contamination (e.g., ground water plume with no known surface source), do not evaluate the soil exposure pathway. Discuss evidence for no soil exposure pathway.

Soll Exposure Resident Population Targets Summary

For each property (duplicate page 35 as necessary):

If there is an area of observed contamination on the property and within 200 feet of a residence, school, or day care center, enter on Table 15 each hazardous substance by sample ID. Record the detected concentration. Obtain cancer risk, and reference dose concentrations from SCDM. Sum the cancer risk and reference dose percentages for the substances listed. If cancer risk or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate the residents and students as Level I. If both percentages are less than 100% or all are N/A, evaluate the targets as Level II.

SOIL EXPOSURE PATHWAY WORKSHEET RESIDENT POPULATION THREAT

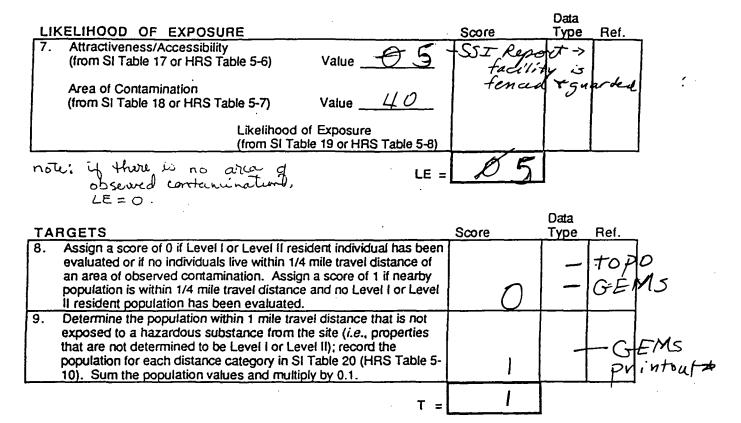
		Uata		
LIKELIHOOD OF EXPOSURE	Score	Type	Refs	
1. OBSERVED CONTAMINATION: If evidence indicates presence of		7		7
observed contamination (depth of 2 feet or less), assign a score of				1
550; otherwise, assign a 0. Note that a likelihood of exposure		1	,	1 .
		1 - n	laste	J - 57
score of 0 results in a soil exposure pathway score of 0.		<u> </u>		رك
	7 ~ ~	ر ا	orge	P,Jt
LE =	350		200,7	to 1 '
,				
T. D.C.T.C.		from	z zu	rface
TARGETS		V a	La	Will.
2. RESIDENT POPULATION: Determine the number of people				
living or attending school or day		}		}*
care on a property with an area of observed contamination and whose				
residence, school, or day care center, respectively, is on or		1		
within 200 feet of the area of observed contamination.		1 1		
Level 1: people x 10 =		1		ł
Level II: people x 1 = Sum =	\cap	[[{
·				1-5T · 1 -
3. RESIDENT INDIVIDUAL: Assign a score of 50 if any Level I		[]		-5I j +0P
resident population exists. Assign a score of 45 if there are Level II		1	•	
targets but no Level I targets. If no resident population exists (i.e.,	_	ĺĺ	_	
	\cap	1 1		-5I , top
no Level I or Level II targets), assign 0 (HRS Section 5.1.3).		 		1. 02 J 10 P
4. WORKERS: Assign a score from the table below for the total				
number of workers at the site and nearby facilities with areas of		i 1		
observed contamination associated with the site.	,		/	/_
Number of Workers Score	-# d	L wa	rper	not
0 0		/ l	/0.0	assure de tion of an action
1 to 100 (5)	Known	- /-1E	, 100	assene a
101 to 1,000		11	2	1.
	du to	the	loca	ite on of
>1,000	17 00	-01:0	/	L - a lati
	me es	7719	2 91	are accivi
5. TERRESTRIAL SENSITIVE ENVIRONMENTS: Assign a value for		7	j	Horila
each terrestrial sensitive environment (SI Table 16) in an area of	1	1	1	//
observed contamination.	}	}		
observed soritarimidatori.	ļ	l l		
The state of the s	ĺ	i		
Terrestrial Sensitive Environment Type Value			ł	
			1	
	,	ļ		
		- (ĺ	
	ł	- 1	ł	
	j	1	J	
	\sim	1		
Sum =	() [1	1	
6. RESOURCES: Assign a score of 5 if any one or more of the				
	;	j	j	
following resources is present on an area of observed		}	į	
contamination at the site; assign 0 if none applies.	(1	į	
Commercial agriculture	ł	1	ł	
Commercial silviculture]	,	j	
Commercial livestock production or commercial livestock	_ 1	1	1	
grazing	() [- 1	į	
- YIGHIY				
	κ			
Total of Targets T=				

- no resident population 55I

SI TABLE 15: SOIL EXPOSURE RESIDENT POPULATION TARGETS

Residence ID: _			Level I	Level	11	Population	- 70pc	
Sample ID	Hazardous Substance	Conc. (mg/kg)	Cancer Risk Concentration	% of Cancer Risk Conc.	RfD	% of RID	Toxicity Value	References
			Highest Percent		Sum of Percents		Sum of Percents	
Residence ID:_			Level I	Leve	I II	Population		
Sample ID	Hazardous Substance	Conc. (mg/kg)	Cancer Risk Concentration	% of Cancer Risk Conc.	RíD	% of RfD	Toxicity Value	References
L		.	Highest Percent		Sum of Percents		Sum of Percents	
Residence ID:			Levell	Leve	ol II	Population	-	
Sample ID	Hazardous Substance	Conc. (mg/kg)	Cancer Risk Concentration	% of Cancer Risk Conc.	RfD	% of RfD	Toxicity Value	References
			Highest		Sum of		Sum of	
		•	Percent	1	Sum of		Sum of	

L.


CHANGE HELD

SI TABLE 16 (HRS TABLE 5-5): SOIL EXPOSURE PATHWAY TERRESTRIAL SENSITIVE ENVIRONMENT VALUES

TERRESTRIAL SENSITIVE ENVIRONMENT	ASSIGNED VALUE
Terrestrial critical habitat for Federal designated endangered or threatened species National Park Designated Federal Wildemess Area	100
National Monument	
Terrestrial habitat known to be used by Federal designated or proposed threatened or endangered species National Preserve (terrestrial) National or State terrestrial Wildlife Refuge Federal land designated for protection of natural ecosystems Administratively proposed Federal Wildemess Area Terrestrial areas utilized by large or dense aggregations of animals (vertebrate species) for breeding	75
Terrestrial habitat used by State designated endangered or threatened species Terrestrial habitat used by species under review for Federal designated endangered or threatened status	50
State lands designated for wildlife or game management State designated Natural Areas Particular areas, relatively small in size, important to maintenance of unique biotic communities	

COOK TO LANGE AREA

SOIL EXPOSURE PATHWAY WORKSHEET NEARBY POPULATION THREAT

*NOTE: Lardfill is located in an industrialized area (topo; SSI Report).

GEMS printout indicates no population w/in a 4-mile radius, which appears to correspond to the information obtained from the topo & SSI Report.

SI TABLE 19 (HRS TABLE 5-8): NEARBY POPULATION LIKELIHOOD OF EXPOSURE FACTOR VALUES

AREA OF CONTAMINATION		ATTRA	CTIVENESS/A	CCESSIBILITY	/ FACTOR V	ALUE	
FACTOR VALUE	100	7 5	50	2 5	10	5	0
100	500	500	375	250	125	50	0
80	500	375	250	125	50	25	0
60	375	250	125	50	25	5	0
4 0	250	125	50	25	5	5	0
20	125	50	25	5	5	5	. 0
5	50	25	5	5	5	5	0

SI TABLE 20 (HRS TABLE 5-10): DISTANCE-WEIGHTED POPULATION VALUES FOR NEARBY POPULATION THREAT

Pop Valu
a:
10
7 8

XO.

A STATE OF THE STA

SI TABLE 17 (HRS TABLE 5-6): ATTRACTIVENESS/ACCESSIBILITY VALUES

Area of Observed Contamination	Assigned Value
Designated recreational area	100
Regularly used for public recreation (for example, vacant lots in urban area)	75
Accessible and unique recreational area (for example, vacant lots in urban area)	75
Moderately accessible (may have some access improvements-for example, gravel road) with some public recreation use	50
Slightly accessible (for example, extremely rural area with no road improvement) with some public recreation use	25
Accessible with no public recreation use	10
Surrounded by maintained fence or combination of maintained fence and natural barriers	5
Physically inaccessible to public, with no evidence of public recreation use	0

SI TABLE 18 (HRS TABLE 5-7): AREA OF CONTAMINATION FACTOR VALUES

Total area of the areas of observed contamination (square feet)	Assigned Value
≤ to 5,000	5
> 5,000 to 125,000	20
> 125,000 to 250,000	40
> 250,000 to 375,000	60
> 375,000 to 500,000	80
> 500,000	100

COMPRESENTAL

SOIL EXPOSURE PATHWAY WORKSHEET (concluded)

WAST	E (CHA	RACT	ERIS'	TICS

10.	Assign the hazardous waste Hill Se ction 5-1-2			10
11.	Assign the highest tox Pathway from SI To	icity value for able 3 or 15	the soil exposure	10,000
12.	Multiply the toxicity and hazar Waste Characteristics score f Product 0 >0 to <10 10 to <100 100 to <1,000 1,000 to <1,000 10,000 to <10,000 10,000 to <1E + 05 1E + 05 to <1E + 06 1E + 06 to <1E + 07 1E + 07 to <1E + 08 1E + 08 or greater			wc = /8

RESIDENT	POPUL	ATION	THREAT	SCORE:
----------	-------	-------	--------	--------

(Likelihood of Exposure, Question	1;	
Targets = Sum of Questions 2, 3, 4	. 5.	6)

LEXIXWC · -82,500-

550×5×18

NEARBY POPULATION THREAT SCORE:

(Likelihood of Exposure, Question 7; Targets = Sum of Questions 8, 9)

LE X T X WC -82,500-

5x x18

SOIL EXPOSURE PATHWAY SCORE:
Resident Population Threat + Nearby Population Threat 1/8 \$2,500 (Maximum of 100)

AIR PATHWAY

Air Pathway Observed Substances Summary Table

On SI Table 21, list the hazardous substances detected in air samples of a release from the site. Include only those substances with concentrations significantly greater than background levels. Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For NAAQS/NESHAPS benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate targets in the distance category from which the sample was taken and any closer distance categories as Level I. If the percentages are less than 100% or all are N/A, evaluate targets in that distance category and any closer distance categories that are not Level I as Level II.

THE PARTIES.

Sample ID:		Le	vel I l	evel li	Distance from S	Sources (mi)	References	well C
Hazardous Substance	Conc. (µg/m³)	Gaseous Particulate	Benchmark Conc. (NAAOS or NESHAPS)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	- M References	% of RID
	Highest Toxicity/ Mobility		Highest Percent		Sum of Percents		Sum of Percents	
Sample ID:		L	evel I	Level II	Distance from S	Sources (mi)	References	
Hazardous Substance	Conc. (µg/m³)	Toxicity/ Mobility	Benchmark Conc. (NAAQS or NESHAPS)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RID	% of RfD
	Highest Toxicity/ Mobility		Highest Percent		Sum of Percents		Sum of Percents	
Sample ID:		L	evel I	Level II	Distance from	Sources (mi)	References	
			Benchmark Conc.					
Hazardous Substance	Conc. (µg/m³)	Toxicity/ Mobility	(NAAQS or NESHAPS)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RID	% of RfD
	Highest Toxicity/		Highest		Sum of .		Sum of	

AIR PATHWAY WORKSHEET

500 500 0 23	Туре		SSI Repo
50 O 23			SSI
			SSI Repo
			SSI Repo
			SSI Rep GEM.
			GEM.
•	-		GEM
		,	
			SST
		<u> </u>	-SST
0			Red Book 1992
43			
	0 43	0 43	0

SI TABLE 23 (HRS TABLE 6-18): AIR PATHWAY VALUES FOR WETLAND AREA

Wetland Area	Assigned Value
< 1 acre	0
1 to 50 acres	25
> 50 to 100 acres	75
> 100 to 150 acres	125
> 150 to 200 acres	175
> 200 to 300 acres	250
> 300 to 400 acres	350
> 400 to 500 acres	450
> 500 acres	500

SI TABLE 24: DISTANCE WEIGHTS AND CALCULATIONS FOR AIR PATHWAY POTENTIAL CONTAMINATION SENSITIVE ENVIRONMENTS

	Distance	Sensitive Environment Type and	
Distance	Weight	Value (from SI Tables 13 and 20) 23	Product
On a Source	0.10	X	
		X	
0 to 1/4 mile	0.025	x	
,		х	
_[x	
1/4 to 1/2 mile	0.0054	x	
		x	
		x	
1/2 to 1 mile	0.0016	x	
		X	
		x	
1 to 2 miles	0.0005	x	
		x	,
		x	
2 to 3 miles	0.00023	x	
'		X	
_		X	
3 to 4 miles	0.00014	x	
	ļ	x	
	1	x	
> 4 miles	0	x	

. Total Environments Score =

SI TABLE 22 (From HRS TABLE 6-17): VALUES FOR POTENTIAL CONTAMINATION AIR TARGET POPULATIONS

							Numbe	r of Peop	ole within	the Distan	ce Category	/			
Distance from Si		Nearest Individual (choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	Pop. Value
On a source	I	20	4	17	53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455	4
0 to $\frac{1}{4}$ m	nile	K .	1	4	13	41	131	408	1,304	4,081	13,034	40,812	130,340	408,114	0
> \frac{1}{4} to ;	- 1 1 77	2 .	0.2	(0.9)	3	9	28	88	282	882	2,815	8,815	28,153	88,153	0,9
$>\frac{1}{2}$ to mile	1 / / / '	5 1	0.06	0.3	0.9	3	8	26)	83	261	834	2,612	8,342	26,119	26
> 1 to miles		/ 0	0.02	0.09	0.3	0.8	3	8	27	83	266	833	2,659	8,326	83
> 2 to miles		0	0.009	0.04	0.1	0.4	1	4	12	38)	120	375	1,199	3,755	38
>3 to miles		0.	0.005	0.02	0.07	0.2	0.7	2	7 .	28	73	229	730	2,285	73
	Nearest Individual	=												Sum =	224.9

References GEMS; SI Report 23

The Hope of workers we assumed to be on the Source for a "worst-case"

^{*} Score = 20 if the Nearest Individual is within $\frac{1}{8}$ mile of a source; score = 7 if the Nearest Individual is between $\frac{1}{8}$ and $\frac{1}{4}$ mile of a source.

AIR PATHWAY (concluded)

WASTE CHARACTERISTICS

9.	If any Actual Contamination Targassign the calculated hazardous of 100, whichever is greater; if the Targets for the air pathway, assistances available to air migration	waste quantity sco here are no Actual (gn the calculated H	re or a score Contamination		10	
10.	Assign the highest air toxicity/mo	obility value from SI	Table, 21. 3 o√		2	
11.	Multiply the air pathway toxicity/n quantity scores. Assign the Was table below:					
		WC Sorra				
	Product	WC Score	· ·	WC =	2	
	Product 0	WC Score	•	WC =	2	
		WC Score 0 1 2		WC =	2	
	Product 0 >0 to <10	WC Score 0 1 2 3	·	WC =	2	
	Product 0 >0 to <10 10 to <100	WC Score 0 1 2 3 6	·	WC =	2	
	Product 0 >0 to <10 10 to <100 100 to <1,000	0 1 2 3	·	WC =	2	
	Product 0 >0 to <10 10 to <100 100 to <1,000 1,000 to <10,000 10,000 to <1E + 05 1E + 05 to <1E + 06	0 1 2 3 6 10 18	·	WC =	2	
	Product 0 >0 to <10 10 to <100 100 to <1,000 1,000 to <10,000 10,000 to <1E + 05 1E + 05 to <1E + 06 1E + 06 to <1E + 07	0 1 2 3 6 10 18 32	·	WC =	2	
	Product 0 >0 to <10 10 to <100 100 to <1,000 1,000 to <10,000 10,000 to <1E + 05 1E + 05 to <1E + 06	0 1 2 3 6 10 18	·	WC =	2	

AIR PATHWAY SCORE:

LE x T x WC 82,500

0, 5 2 (maximum of 100)

 $500 \times 43 \times 2$ 82,500 = 0.52

SITE SCORE CALCULATION	S	S ²
GROUND WATER PATHWAY SCORE (SGW)	57.82	3343.15
SURFACE WATER PATHWAY SCORE (Saw)	0.00	0.00
SOIL EXPOSURE (SS)	0.6	0,36
AIR PATHWAY SCORE (SA)	0.52	0.27
SITE SCORE $\sqrt{\frac{S_{GW}^2 + S_{SW}^2 + S_{S}^2 + S_{A}^2}{4}}$	=	28.91

·		
·		
	•	
·		

THE REPORT OF THE PROPERTY OF

1 990 000 FEET (S. C.)

U.S. EPA REGION IV

SDMS

Unscannable Material Target Sheet

DocID: 10730213	Site ID: GAD 9805 592/5
Site Name: Union Comp	Corp
Nature of Material:	
Map:	Computer Disks:
Photos:	CD-ROM:
Blueprints:	Oversized Report:
Slides:	Log Book:
Other (describe): Carrial Ph	rota Mep
Amount of material:	
* Please contact the appropriate R	ecords Center to view the material *

SCREENING SITE INVESTIGATION REPORT

UNION CAMP CORPORATION SAVANNAH, GEORGIA GAD980559215

Randy E. Dominy
Environmental Specialist
Georgia Environmental Protection Division
October 1988

Reviewed By: Marlin R. Gottschole Date: December 30, 1988

TABLE OF CONTENTS

UNION CAMP CORPORATION

SCREENING SITE INVESTIGATION REPORT

	Executive Summary
1.0	Introduction
2.0	Site Characterization
3.0	Target Analysis
4.0	Field Investigation
5.0	Summary
	References
	Appendix A - Topographic Map
	Appendix B - SI Form, EPA 2070-13
	Appendix C - Analytical Results

EXECUTIVE SUMMARY

A landfill owned and operated on-site by the Union Camp Corporation from 1936 to 1962 is located at Allen Boulevard next to the SEPCO Substation in Savannah, Chatham County, Georgia. Coordinates are latitude 32° 04' 36.0" N and longitude 081° 07' 30.0" W.

Although the waste types and amounts received by the landfill are unrecorded, it is thought they consisted of non-hazardous wastes from the wood products facility such as wood chips, grit, sand, ashes, etc. The landfill is now overgrown with grass and vegetation.

The study area lies in the Coastal Plain Physiographic Province of Georgia and is underlain by sedimentary rocks of the Pamlico Shoreline Complex. Dominant soils in the area are loamy sands that are nearly level.

A large groundwater target population exists within the study area because of the presence of one Garden City municipal well and eight municipal wells serving the City of Savannah located within four miles of the site. The Garden City well alone serves 6895 customers; Savannah city wells serve an estimated 141,634. Twenty-nine private wells within four miles yield 148 additional targets.

Since Union Camp operated this landfill for twenty-six years with few records about waste types and quantities, an investigation into potential soil and/or water contamination from possibly hazardous substances leaching from buried materials is necessary.

Laboratory analyses confirmed that heavy metal contamination is present around the landfill. Of primary concern is the high levels of barium, chromium, nickel, and lead detected in on-site groundwater. Since groundwater is used extensively by area residents, it is important to identify the source of these contaminants. Therefore, the Georgia Environmental Protection Division recommends this site for a Listing Site Investigation.

1.0 INTRODUCTION

Union Camp Corporation operates a multi-faceted manufacturing facility in Savannah, with most of the non-hazardous waste products produced in its Paper and Board Division. These wastes, consisting of wood chips, grit, sand, and ashes, allegedly comprised the bulk of the wastes placed in an on-site landfill from 1936 to 1962. However, few records exist indicating exact waste types and amounts. The landfill is above land surface, approximately sixty feet high and approximately four acres in size. At present, the landfill is completely overgrown by grass, shrubs, and trees (Ref. 1, 2).

2.0 SITE CHARACTERIZATION

The on-site landfill at Union Camp Corporation operated from 1936 to 1962. Waste handling permits were not required since the landfill was operated before solid waste management regulations were enacted. No remedial or regulatory action concerning this landfill is documented. Union Camp Corporation currently holds an NPDES Permit (#025-0192-07), and a surface water withdrawal permit (#015-0009) (Ref. 1, 2).

Union Camp Corporation operated the on-site landfill from 1936 to 1962. Records indicating waste types and amounts are non-existent, but is is thought that the majority of wastes consisted of wood chips, grit, sand, ashes, etc. produced in the paper and board division. A site sketch showing, the former landfill site in relation to the existing Union Camp facility is attached (Ref. 1, 2; Appendix A - Attachment 1).

The landfill site is above land surface, sixty feet high, occupying approximately four acres. At present, the site is completely overgrown with vegetation. The Union Camp Corporation property is fenced and guarded, thereby limiting access to the site.

Union Camp Corporation is located in the Greater Savannah Metropolitan Area, a very densely populated urban landscape. The four-mile radius encompasses parts of Savannah, Garden City, and Port Wentworth, with estimated populations of 141,634, 6895, and 3947, respectively. Populations within the 1-, 2-, and 3-mile radii total 1000, 3800, and 5000, respectively. A number of schools, kindergartens, and day-care centers are located within two miles of the site. The nearest residence is located 0.7 miles to the west.

Agricultural land use within the area is non-existent (Ref. 3, Appendix A - Attachment 2).

The Savannah River Wildlife Refuge is adjacent to the Union Camp Corporation property, separated only by the Savannah River. This area represents a sensitive environment, for it serves as a habitat for several endangered species (Ref. 4, Appendix A - Attachment 2).

Annual precipitation in the area is 49 inches, with mean annual lake evaporation of 44 inches. Therefore, average annual net precipitation is 5 inches. The 1-year 24-hour rainfall for the area measures 3.7 inches (Ref. 5, 6).

Percolation and/or runoff drains from the aboveground landfill onto surrounding terrain. However, the general flatness of the area minimizes any further off-site drainage. Any off-site drainage would tend to flow eastward and northeastward towards the Savannah River. No known water intakes for drinking or irrigation exist on the Savannah River downstream from the site to the Atlantic Ocean. The Savannah River is actively used for fishing, recreation, and commercial navigation. No data to indicate surface water contamination exists (Ref. 2, Appendix A - Attachment 2).

Groundwater in the area is supplied by the Upper Floridan Aquifer. Permeable limestone provides a major water source for deep wells, whereas layers of sand, gravel, and clay between the surface and permeable limestone provide water for shallow wells. Well depths in the area are variable, ranging from 120 feet to over 1000 feet (Ref. 7).

Area groundwater serves as the exclusive source of drinking water, with nine municipal wells and 29 private wells within the study area serving over 150,000 residents. Groundwater is also heavily used by local industry, with Union Camp having five production wells on-site. The nearest private well is located 1.6 miles southwest of the site. Only a limited number of private wells exist within the study area, with 0, 1, 16, and 29 present within the 1-, 2-, 3-, and 4-mile radii, respectively, serving 110 potential targets. Garden City has a city well located 1.2 miles to the west, serving 6895 residents, while the city of Savannah has 1, 2, 6, and 7 municipal wells within the 1-, 2-, 3-, 4-mile radii, respectively. These wells are commingled within the system and serve 141,634 customers (Ref. 2, 3; Appendix A - Attachment 2).

3.0 Target Analysis

A large number of potential targets exist in the study area because of heavy groundwater use (Table 1). One Garden City well and six City of Savannah wells located within 3 miles of Union Camp serve 148,529 potential targets. Another 61 people utilize 16 private wells within 3 miles of the site. No known surface water intakes for drinking water occur along the Savannah River, nor has any air release been documented. Since the area is not accessible to the public, nearby residents should not come into direct contact with any potentially hazardous wastes (Ref. 2).

TABLE 1
Target Summary

Target Population	Total Affected
16 private wells serving 61, 1 Garden City Well serving 6895 6 Savannah City wells serving 141,634	148,590
No known intakes	0
None - not scored	0
None - fenced facility	0
	16 private wells serving 61, 1 Garden City Well serving 6895 6 Savannah City wells serving 141,634 No known intakes None - not scored

4.0 FIELD INVESTIGATION

On August 26, 1988, GA-EPD collected six environmental samples to determine if area soil and water was contaminated. An on-site groundwater sample was collected on the northwest side of the landfill at a depth of 4.0 feet, to determine if sub-surface drainage had provided a pathway for migration of wastes off-site. A private well, owned by Stanley Barras at (b) (6)

(b) (6) and located 2.4 miles northwest of the site on US Highway 17, served as a source for a background groundwater sample. Depth of the well is unknown.

A surface water sample was collected from an unlined drainage ditch located on the northwest side of the landfill. (Ref. 8; Appendix A - Attachment 1, 2)

Two soil borings were collected at a depth of 6 to 8 inches on the northwest side of the landfill and composited. A background soil sample was collected in a wooded area 2.4 miles northwest of the site at a depth of 6 to 8 inches.

For waste characterization, a sample was collected from the top of the landfill.

All samples were split with Union Camp Corporation personnel, labeled, and placed on ice for transport to the GA-EPD laboratory for analyses. Sampling and subsequent analyses were conducted in accordance with procedures set forth in EPA Publication SW-846, "Test Methods for Evaluating Solid Waste."

TABLE 2
Summary of Analytical Results

Parameter	On-site Waste	On-site Soil	Background Soil	On-site Surface Water	On-site Groundwater	Background Groundwater
		mg/kg-			ug/1	
Barium	100	48	13	78	3100	110
Chromium	7.1	35	6.4	25	1700	<10
Nickel	7.8	9.8	3.2	<20	240	<20
Lead	۷3	32	4.4	<25	1100	<25

Results from EPD's laboratory indicate elevated levels of heavy metals, particularly in on-site groundwater collected at the Union Camp facility (Table 2; Appendix C). The levels of barium, chromium, nickel, and lead in on-site groundwater were 28, 170, 12, and 44 times above background levels. Barium, chromium, and lead concentrations exceeded the maximum contaminant levels for safe drinking water, as specified under Georgia regulations (Ref. 9).

Levels of barium, chromium, nickel, and lead in on-site soil were higher than background by factors of 4, 6, 3, and 7, respectively. A waste sample collected from the top of the landfill possessed high levels of barium (100 mg/kg). This may have contributed to the elevated barium level (78 ug/l) noted in the surface water sample collected adjacent to the landfill.

5.0 SUMMARY

Elevated levels of heavy metals were detected at the landfill operated by Union Camp from 1936 to 1962. Increased levels of barium, chromium, nickel, and lead were present in on-site groundwater. Analyses of a waste sample from the top of the landfill indicated high levels of barium. Although elevated levels of heavy metals were detected in on-site soil, levels did not exceed seven times background.

Because of the high levels of barium, chromium, nickel, and lead present in on-site groundwater, further detailed investigation is necessary. A thorough sampling of the landfill, utilizing drill rigs for core samplings, might indicate whether the landfill holds the heavy metals which are present in the groundwater. More detailed studies of area groundwater, utilizing monitoring wells, could better identify the extent of heavy metal contamination. This is particularly important since approximately 150,000 persons utilize area groundwater for drinking. Therefore, the Georgia Environmental Protection Division recommends the Union Camp Landfill for a Listing Site Investigation.

REFERENCES

- 1. Ussery, J. 1982. Identification and Preliminary Assessment Union Camp Corporation. Georgia Department of Natural Resources, Environmental Protection Division.
- Dominy, R.E. 1988. Trip Report Site Inspection of Union Camp Corporation, 7/11/88. Georgia Department of Natural Resources, Environmental Protection Division.
- 3. Association of County Commissioners of Georgia. 1987. Georgia County Government Yearbook. Atlanta, Georgia.
- 4. United States Department of Interior. 1985. Endangered and Threatened Species of the Southeastern United States. Fish and Wildlife Service, Atlanta, GA. Ref No. 19.
- 5. Wilkes, R.L., J.H. Johnson, H.T. Stoner, and D.D. Bacon. 1974. Soil Survey of Bryan and Chatham Counties, Georgia. USDA-SCS.
- 6. U.S. EPA. 1984. Uncontrolled Hazardous Waste Ranking System, A User's Manual (HW-10).
- 7. Clarke, J.S., S.A. Longworth, C.N. Joiner, M.F. Peck, K.W. McFadden, and B.J. Milby. 1987. Groundwater Data for Georgia, 1986. Georgia Department of Natural Resources, Environmental Protection Division, Georgia Geologic Survey.
- 8. Dominy, R.E. 1988. Trip Report Sampling of Union Camp, 8/26/88. Georgia Department of Natural Resources, Environmental Protection Division.
- 9. Georgia Department of Natural Resources. Rules for Safe Drinking Water, Chapter 391-3-5 of Rules of Georgia Department of Natural Resources, Environmental Protection Division, August 4, 1983 (Revised).

References

.

&EP/
NOTE: This for submitted on thi and on-site insp

POTENTIAL HAZARDOUS WASTE SITE IDENTIFICATION AND PRELIMINARY ASSESSMENT

TITE NUMBER (to be as-

one is completed for each potential hezardous weste site to help set priorities for a line poetion. The information is form is based on available records and may be updated on subsequent formers to result of additional inquiries sections.

4A+ C - 5 C - m + 5 - 5			2.11-2027, 41/2 11		bingion, DC 20460.
BO559215 CHATHAM N CAMP CURP)E	NTIFICATIO	ON:		
I BUYD NEXT TO SEPCO SUEST		R. STPEET	for other identilis	ـــــــــــــــــــــــــــــــــــــ	
MAN GA 31401		D. STATE	TE VIR COD	E 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	D. T. WAME
FRS. CHRIS, DIV TECA 9122305771		0.51216	E. ZIP CODE	1	1 14 MANG
•				7.781	LETHONE NUMBER
H. TYPE OF OWNERSHIP					
IL FEDERAL TE TO COUNTY THE	40 NY	oreku []	S PP VATE	. • .	· · · · · · · · · · · · · · · · · · ·
"103-CTIFICATION" DATE: 6106	5 0 8	·			,
JIM SETZER PHUME: 4-4-056-2633					K DATE DENTIF
				4 L 7 F +	.ETHONE NUMBER
II. PRELIMINARY ASSES	SSME	NT / omple	to this section !		
	104E	<u>.</u>	5 UNKNOWI		
B. RECOMMENDATION I. NO ACTION NEECED (no hezerá)		7 2. IMI	MEDIATE SITE IN	*30 EC 71314 *1	2005D
3. SITE INSPECTION NEEDED a. TENTATIVELY SCHEDULED FOR:		b. w	NUL BE PERFOR	MEL BY	
b. WILL BE PERFORMED BY.		-			
		1. 4. SIT	TE INSPECTION >	প্ৰ <u>হি∟িয়ে কি.</u> দ	рессия)
C. PREPARER INFORMATION 1. NAME		? TE	ELEPHONE NUM!	****	E. DATE (mo., day
III. SIT	EIN	VEORMATIO	N		
A. SITE STATUS					
1. ACTIVE (These industrial or municipal sites which are being used for weste treatment; educate, see if intre-quently.)	cuive	7 Those eite no regular o	ER (specify) is that include kin or continuing us;	en de esse for	ise Priidnight dumping waars disposal haa oc
B. IS GENERATOR ON SITE!		ـــــ			·
1 NO Z. TES (apacito	والمؤ	HALIF'A TOUL-I	digit \$10 Cates		
C. AREA OF SITE (to ocras) D. IF AFPARENT SERIE	UUSN	FSS OF SITE	HOHER 21	1	76.5
1. LATITUDE (degmile			12.7.2		na telepana rec aj

LEKCLA

LAND PROTECTION BRANCH HAZARDOUS WASTE ANALYSIS REQUEST

DATE: 8-26-88 PROJECT: Union Como	COLLECTOR: Kandy Dominy
NO. SAMPLES: 6 100 NOS. 3075-367	$\frac{7-308}{2}$ from $\frac{3}{3}$ same $\frac{1}{3}$ som $\frac{2}{3}$
CAUSTIC ACID SOLVENT UNOX	SLUDGE 1
INFORMATION FOUND: A classed on-side	landfill operated from 1936-62
and is thought to have rea	eved waster associated will
poper and paper board manufactur	DE PERSONAL DE LA CONTROL DE L
HAZARDOUS WASTE NOS.	N C G G G G G G G G G G G G G G G G G G
HAZARDOUS HANDLING:	7/0/
WCRK PRIORITY (CRITICAL NEED)	OCT 26 1988
METALS	NESTICATION PRODUCT
tara	VESTIGATION PROGRAM
TOT DIS	
METALS (DW 100 Hg)	_ 100x [30x []
METALS (DW WITH Hg)	F "TH HG)
TOT DIS TOT DIS	
NICKEL PT CARMIN TO	EP NICKEL EP CAIMIUM
ARSENIC IEAD	EP ARSENIC P LEAD
CHROATIN LIL NEBONG LIL	EP CHROMIUM C EP MERCURY C
CHRON-HEX [] SELENIM [] [EP CHROW-HEX EP SELEVILM
SPECIFIC	ANALYSES -
PH C SULFIDE C	Z SOLIDS [7]
FLASH PI	TOT. PHENCES
CYANIDE TOT. TOC	CHLORIDE -
CYANIDE AM. TOH	FLUORIDE [7]
ORGANIC	ANALYSES
PESTICILE SCREEN (EC)	CC-YS ACID EXTRACTABLES
PCB	CC-MS BASE/NEUTRALS
VOLATTLE ORGANICS (VOA)	·.
SPECIFIC ORGANICS:	
an 0. 1 DI 100	Q. 00000, 1.11.
ATTED. D: 1 failer 11. Littechelle AL	THORIZED: Consider Il William

SAFLE DATE: 8/25/88 PROJECT: Llarge	m Ca	тр	·			_ come	CTOR: R	ndy B	Dominy
TIVE REC'D REC'D BY: M BY: TO P LABORATORY MANAGE TO STATE OF THE STATE OF	W-	/	S-1 compo suil- buse landfa	site from of	307° Swife water difeh base landf	tice from at of	3078 GW-1 grounda from he augered & 4ft	unter and 1 hde	
DATE: 10-25-88 PARASIERS LAB NO. TOtal:	Hw	3075	3	074.	30	าา	30	18	
As	 <5	mg/kg	<5 <5	mg/kg	<30 <50	/leg/\$_	<30 <50	well	
Ba	100	,s	48	11	78	Į!		"	
Cd Cr	7.1	pi ji	35	,,	<10 25	- <i>I</i>)	1.700	n ()	
Ni Ni	7.8	J)	9.8	,,	<20	į i	240	Ji	
Pb	1<3		32	"	< 25		1,100		
Şe.	1410		<10		<100		1<100	n	
Volatile Organics	¥ <i>5</i> ,	e # A1	taci	540 5	hee	+5 -	+>	<u></u>	
					+		+		
670.000					-				
<u> </u>									

SAPPLE 8/25/88 PROJECT: Unit	on Camp		om	ECTOR: Randy Doming
HALCO ND. DATE REC'D 26-Flug-1988 LAKEL TIPS REC'D 10:36 REC'D 10	B5 buckground 50il - Johen From Roadside	3080 BGW background groundwakr- taken from domestic well		
DATE: 10-25-88 PARATEURS LAS NO. Total:	3079	3070		
Ag As Ba Cd	<5 mg/kg	<30 /ug/l <50 "		
Cr Ni Pb	3.2"	<10 " <20 "		
Volatila Organics	See Altac	<100 " Aed Sheets		
RD:WS:				

DATE: 9-20-84	GEORGIA ENVIRONMENTAL PROTECTION DIVISION	SAMPLE REC'D (date & time):
PROJECT: Union Camp	PURGEABLE ORGANIC ANALYSIS-WATER	SAMPLE START (date & time):
SOURCE: Wasterand	DATA REPORTING SHEET	SAMPLE STOP (date & time):
Frounduster	SAMPLE TYPE: Uater SAMPLE NO.: Hw 3080	CHEMIST: COMPLETE:

(date & time): late & time): COMPLETE:

Compound	Storet#	Units	Compound	Storet#	Units
Methylene Chloride	34423 <5	μg/1	Acetone	<10	μg/1
Trichlorofluoromethane	34488 </td <td>μg/1</td> <td>Methyl Ethyl Ketone</td> <td>< 10</td> <td>μg/l</td>	μg/1	Methyl Ethyl Ketone	< 10	μg/l
1,1-Dichloroethylene	34501	μg/1	Carbon Disulfide	<1	μg/1
1,1-Dichloroethane	34496	µg/1	Isopropyl Acetate	,	μg/1
1,2-Trans-Dichloro-		•	2-Hexanone		,
ethylene	34546	μg/1	Methyl Isobutyl Ketone		μg/1
Chloroform	32106	μg/1	Styrene		μg/1
1,2-Dichloroethane	32103	дg/1	O-Xylene		ر 1/ویر
1,1,1-Trichloroethane	34506	дg/1	P-Xylene		μg/1
Carbon Tetrachloride	32102	μg/l`	M-Xylene		μg/1
Dichlorobromomethane	32101	,ug/1	Ethyl Acetate		μg/1
1,2-Dichloropropane	34541	μg/1	n-Propyl Acetate		μg/l
Trans-1,3-Dichloro-	T-		Butyl Acetate	V	μg/1
propene	34699	μg/l	Acrolein	34210 < 50	дg/1
Trichloroethylene	39180	µg/l	Acrylonitrile	34215 < 50	μg/l
Benzene	34030	µg/l	Chloromethane	34418 < 10	µg/l
Chlorodibromomethane	34306	μg/1	Bromomethane	34413	, μg/1
1,1,2-Trichloroethane	34511	μg/1	Vinyl Chloride	39175	μg/l
Cis-1,3-Dichloropropene	34704	дg/1	Chloroethane	34311	μg/l
2-Chloroethyl Vinyl					μg/l
. Ether	34576				μg/l
Bromoform	32104	µg/l			µg/1
1,1,2,2-Tetrachloro-					/ug/l
ethane	34516	µg/1			μg/1
Tetrachloroethylene	34475	μg/1			μg/1
Toluene	34010	µg/1		1	μg/1
Chlorobenzene	34301	μg/1			μg/1 '
Ethylbenzene	34371	μ g/1			μg/1

U - ANALYZED FOR BUT NOT DETECTED (value reported is detection limit - D.L.)

M - NOT ANALYZED

No other purgeable organic compound detected with an estimated minimum detection limit of

DATE:	9-20-88	GEO!
PROJEC	T: Union Camp	1
SOURCE	:	
Backe	sound Soil	_ `>

GEORGIA ENVIRONMENTAL PROTECTION DIVISION PURGEABLE ORGANIC ANALYSIS-SEDIMENT

DATA REPORTING SHEET

SAMPLE TYPE: Soil
SAMPLE NO.: HW 3079

SAMPLE	REC'D	(date	& tim	ne):		
SAMPLE						
SAMPLE	STOP (date 8	L time	:):_		_
CHEMIST	: m	CON	IPLETE	D:	Ðl	

Compound	Storet!	<u>Units</u>	Compound	Storet#	Units
Methylene Chloride	34426 < 5	µg/Kg	Acetone	< 10	_µg/Kg
Trichlorofluoromethane	34491 < /	μg/Kg	Methy Ehtyl Ketone	<10	Alg/Kg
1,1-Dichloroethylene	34504	μg/Kg	Carbon Disulfide	< 1	ug/Kg
1,1-Dichloroethane	34499	µg/Kg			
1,2-Trans-Dichloro-			Isopropyl Acetate	1	дg/Kg
ethylene	34549	μg/Kg	2-Hexanone		μg/Kg
Chloroform	34318	дд/Кд	Methyl Isobutyl Ketone		µg/Kg
1,2-Dichloroethane	34534	μg/Kg	Styrene		μg/Kg
1,1,1-Trichloroethane	34509	µg/Kg	O-Xylene		дg/Kg
Carbon Tetrachloride	34299	μg/Kg	P-Xylene		µg/Kg
Dichlorobromomethane	34330	µg/Kg	M-Xylene		ла/Ка
1,2-Dichloropropane	34544	µg/Kg	Ethyl Acetate		дg/Kg
Trans-1,3-Dichloro-		-	N-Propyl Acetate		µg/Kg
propene	34697	_ µg/Kg	Butyl Acetate		µg/Кg
Trichloroethylene	34487	_μg/Kg	Acrolein	34213 < 50	дg/Kg
Benzene	34237	дg/Kg	Acrylonitrile	34218 250	дg/Kg
Chlorodibromomethane	34309	μg/Kg	Chloromethane	34421 210	дg/Kg
1,1,2-Trichloroethane	34514	дg/Kg	Bromomethane	34416	дд/Кд
Cis-1,3-Dichloropropene	34702	дg/Kg	Vinyl Chloride	34495	дg/Kg
2-Chloroethyl Vinyl			Chloroethane	34314 V	дg/Kg
Ether	34579	_ µg/Kg			µg/Kg
Bromoform	34290	дg/Kg			дg/Kg
1,1,2,2-Tetrachloro-		•			μg/Kg
ethane		дg/Kg			μg/Kg
Tetrachloroethylene	34478	µg/Kg			μg/Kg
Toluene	34483	µg/Kg			дg/Kg
Chlorobenzene	34304	дg/Kg			μg/Kg
Ethylbenzene	34374	дg/Kg		1	μg/Kg _.

U - ANALYZED FOR BUT NOT DETECTED (value reported is detection limit - D.L.)

No other purgeable organic compound detected with an estimated minimum detection limit of

M - NOT ANALYZED

DATE: 9-20-88 GEORGIA ENVIRONMENTAL PROTECTION DIVISION
PROJECT: Union Comp PURGEABLE ORGANIC ANALYSIS-WATER
SOURCE: GW-1 Franchista DATA REPORTING SHEET SAMPLE STOP (date & time):

SAMPLE TYPE: Vale CHEMIST: m6 COMPLETE: DATA
SAMPLE NO.: HU 3028

Compound	Storet!	Units	Compound	Storet#	<u>Units</u>
Methylene Chloride	34423 <5	μg/1	Acetone	<10	μg/1
Trichlorofluoromethane	34488 </td <td>μg/1</td> <td>Methyl Ethyl Ketone</td> <td><10</td> <td>ug/1</td>	μg/1	Methyl Ethyl Ketone	<10	ug/1
1,1-Dichloroethylene	34501	µg/1	Carbon Disulfide	< 1	µg/1
1,1-Dichloroethane	34496	ug/1	Isopropyl Acetate		'µg/1
1,2-Trans-Dichloro-			2-Hexanone	1	,
ethylene	34546	μg/1	Methyl Isobutyl Ketone		μg/1
Chloroform	32106	µg/1	Styrene)1g/1
1,2-Dichloroethane	32103	µg/1	O-Xylene		,ug/1
1,1,1-Trichloroethane	34506	µg/l	P-Xylene		ug/l
Carbon Tetrachloride	32102	µg/1	M-Xylene		μg/1
Dichlorobromomethane	32101	µg/1	Ethyl Acetate		μg/1
1,2-Dichloropropane	34541	,1g/1	'n-Propyl Acetate		μg/1
Trans-1,3-Dichloro-			Butyl Acetate	V	ug/1
propene	34699	μg/l	Acrolein	34210 < 50	ug/l
Trichloroethylene	39180	μg/l	Acrylonitrile	34215 < 170	μg/1
Benzene	34030	µg/l	Chloromethane	34418 0</td <td>μg/1</td>	μg/1
Chlorodibromomethane	34306	μg/l	Bromomethane	34413	μg/1
1,1,2-Trichloroethane	34511	µg/l	Vinyl Chloride	39175	μg/l
Cis-1,3-Dichloropropene	34704	дg/1	Chloroethane	34311 V	μg/l
2-Chloroethyl Vinyl					μg/l
Ether	34576				µg/1
Bromoform	32104	μg/1			µg/1
1,1,2,2-Tetrachloro-		·			/1g/l
ethane	34516	µg/l			1/وير
Tetrachloroethylene	34475	μg/l			µg/l
Toluene	34010	μg/l	i		ر (pug/1
Chlorobenzene	34301	µg/1	·		μg/l
Ethylbenzene	34371	$\mu g/1$			ر 1/ولر

U - ANALYZED FOR BUT NOT DETECTED (value reported is detection limit - D.L.)

M - NOT ANALYZED

No other purgeable organic compound detected with an estimated minimum detection limit of

(---

DATE:	1/20/88	(
PROJECT:	Walon Comp	
		<u>'</u>

GEORGIA ENVIRONMENTAL PROTECTION DIVISION

PURGEABLE ORGANIC ANALYSIS-WATER

DATA REPORTING SHEET

Ditelegat bose of Familiel

SAMPLE TYPE: ACCOUNTY SAMPLE NO.: HW 3077

SAMPLE REC'D (date & time):

SAMPLE START (date & time):

SAMPLE STOP (date & time):

Compound	Storet!	Units	Compound	Storet#	<u>Units</u>
Methylene Chloride	34423 <5	μg/1	Acetone	<10	µ1g/1
Trichlorofluoromethane	34488 </td <td>μg/1</td> <td>Methyl Ethyl Ketone</td> <td><10</td> <td>Jug/1</td>	μg/1	Methyl Ethyl Ketone	<10	Jug/1
1,1-Dichloroethylene	34501	µg/1	Carbon Disulfide	< 1	μg/1
1,1-Dichloroethane	34496	лg/1	Isopropyl Acetate		,ug/1
1,2-Trans-Dichloro-	T-	.	2-Hexanone	ì	, 3.
ethylene	34546	μg/1	Methyl Isobutyl Ketone		μg/1
Chloroform	32106	μg/l	Styrene		μg/1
1,2-Dichloroethane	32103	µg/1	O-Xylene		μg/1
1,1,1-Trichloroethane	34506	μg/1	P-Xylene		μg/1
Carbon Tetrachloride	32102	μg/1	M-Xylene		μg/1
Dichlorobromomethane	32101	дg/1	Ethyl Acetate		μg/1
1,2-Dichloropropane	34541	µg/1	n-Propyl Acetate		μg/1
Trans-1,3-Dichloro-			Butyl Acetate		ug/l
propene	34699	μg/1	Acrolein	34210 <50	μg/l
Trichloroethylene	39180	μg/1	Acrylonitrile	34215 <50	μg/1
Benzene	34030	μg/l	Chloromethane	34418 <10	μg/l
Chlorodibromomethane	34306	μg/l	Bromomethane	34413	μg/1
1,1,2-Trichloroethane	34511	µg/l	Vinyl Chloride	39175	µg/l
Cis-1,3-Dichloropropene	34704	μg/1	Chloroethane	34311 V	μg/l
2-Chloroethyl Vinyl	7	_			µg/l
Ether	34576				µg/1
Bromoform'	32104	μg/1			µg/l
1,1,2,2-Tetrachloro-	T				ug/l
ethane	34516	μg/1			μg/l
Tetrachloroethylene	34475	μg/1			µg/1
Toluene	34010	μg/1			µg/1
Chlorobenzene	34301	µg/1			µg/1
Ethylbenzene	34371	µg/1			μg/l

U - ANALYZED FOR BUT NOT DETECTED (value reported is detection limit - D.L.)

M - NOT ANALYZED

No other purgeable organic compound detected with an estimated minimum detection limit of

	PURGEABLE ORG		-SEDIMENT S	SAMPLE STA	'D (date & t RT (date & t P (date & ti	ime):
Compound	Storet!	<u>Units</u>	Compound		Storet#	Units '
Methylene Chloride	34426 25	μg/Kg	Acetone	•	< 10	μg/Kg.
Trichlorofluoromethane	34491 41	дg/Kg	Methy Ehtyl Keton	e	< 10	μg/Kg
l,l-Dichloroethylene	34504	дg/Kg	Carbon Disulfide		- <1	μg/Kg
1,1-Dichloroethane	34499	µg/Kg				_
1,2-Trans-Dichloro-			Isopropyl Acetate	1	1	μg/Kg
ethylene	34549	µg/Kg	2-Hexanone	1		μg/Kg
Chloroform	34318	µg/Kg	Methyl Isobutyl K	etone		μg/Kg
1,2-Dichloroethane	34534	ug/Kg	Styrene			μg/Kg
1,1,1-Trichloroethane	34509	μg/Kg	O-Xylene			μg/Kg
Carbon Tetrachloride	34299	μg/Kg	P-Xylene	•		_µg/Kg
Dichlorobromomethane	34330	μg/Kg	M-Xylene			ug/Kg
1,2-Dichloropropane	34544	μg/Kg	Ethyl Acetate			μg/Kg
Trans-1,3-Dichloro-		/- J/ J	N-Propyl Acetate			ug/Kg
propene	34697	μg/Kg	Butyl Acetate			μg/Kg
Trichloroethylene	34487	μg/Kg	Acrolein		34213 <50	ug/Kg
Benzene	34237	µg/Kg	Acrylonitrile		34218 < 50	μg/Kg
Chlorodibromomethane	34309	µg/Kg	Chloromethane		34421 0</td <td>μg/Kg</td>	μg/Kg
1,1,2-Trichloroethane	34514	дg/Kg	Bromomethane		34416	μg/Kg
Cis-1,3-Dichloropropene	34702	µg/Kg	Vinyl Chloride		34495	μg/Kg
2-Chloroethyl Vinyl		7-37 3	Chloroethane		34314	дg/Kg
Ether	34579	µg/Kg			• • • • • • • • • • • • • • • • • • •	дg/Kg
Bromoform	34290	μg/Kg				дg/Kg
1,1,2,2-Tetrachloro-						µg/Kg
ethane	44519	дg/Kg				дg/Kg
Tetrachloroethylene	34478	дg/Kg		·		дg/Kg
Toluene	34483	μg/Kg				μg/Kg
Chlorobenzene	34304	μg/Kg				μg/Kg
Ethylbenzene	34374	μg/Kg				μg/Kg
-			·_ · - · · · · · · · · · · · · · · · · ·			

U - ANALYZED FOR BUT NOT DETECTED (value reported is detection limit - D.L.)

No other purgeable organic compound detected with an estimated minimum detection limit of

M - NOT ANALYZED

DATE: 9-20-88 GEORGIA ENVIRONMENTAL PROTECTION DIVISION PROJECT: Union Camp PURGEABLE ORGANIC ANALYSIS-SEDIMENT DATA REPORTING SHEET

Top of landfull SAMPLE TYPE: And + Waste

SAMPLE REC'D (date & time):

SAMPLE START (date & time):

SAMPLE STOP (date & time):

CHEMIST: MB COMPLETED:

дg/Kg

Compound Storet# Units Compound Storet# Units 34426 45 Methylene Chloride µg/Kg Acetone <10 Md/Kd Trichlorofluoromethane 34491 < / Methy Ehtyl Ketone μg/Kg 410 Alg/Kg 34504 1,1-Dichloroethylene ug/Kg Carbon Disulfide μg/Kg 1,1-Dichloroethane 34499 Md/Kd < 1 1,2-Trans-Dichloro-Isopropyl Acetate Jug/Kg ethylene 34549 ug/Kg 2-Hexanone µg/Kg Chloroform 34318 Methyl Isobutyl Ketone µg/Kg дg/Kg 1,2-Dichloroethane 34534 µg/Kq дg/Kg Styrene 1,1,1-Trichloroethane 34509 μg/Kg O-Xylene дg/Kg Carbon Tetrachloride 34299 < μg/Kg P-Xylene дg/Kg Dichlorobromomethane 34330 M-Xylene µg/Kg Md/Kd 1,2-Dichloropropane 34544 дg/Kg Ethyl Acetate µq/Kq Trans-1,3-Dichloro-N-Propyl Acetate μg/Kg propene 34697 μg/Kg Butyl Acetate µg/Kg Trichloroethylene 34487 μg/Kg Acrolein 34213 < 50 дg/Kg Benzene 34237 дg/Kg Acrylonitrile 34218 200 μq/Kg Chlorodibromomethane 34309 μg/Kg Chloromethane 34421 </0 Ma/Ka 1,1,2-Trichloroethane 34514 ug/Kg Bromomethane 34416 Md/Kd Cis-1,3-Dichloropropene 34702 дg/Kg Vinyl Chloride 34495 дg/Kg 2-Chloroethyl Vinyl Chloroethane 34314 μg/Kg 34579 Ether Md/Kd Hexanal 320 **#** µg/Kg Bromoform 34290 Hestana 1 ທີ . µg/Kg **∦** μg/Kg 1,1,2,2 Tetrachloro-Octomal # μg/Kg ethane 44519 ug/Kg μg/Kg Tetrachloroethylene 34478 ug/Kg Md/Kd Toluene 34483 μg/Kg Md/Kd Chlorobenzene 34304 дg/Kg дq/Kq

SAMPLE NO.: HW 3075

U - ANALYZED FOR BUT NOT DETECTED (value reported is detection limit - D.L.)

Mg/Kg

No other purgeable organic compound detected with an estimated minimum detection limit of

M - NOT ANALYZED

Ethylbenzene

* Estimated Values and Tentetive identification

34374

STATE : GA

REGION: 04

U.S. ENVIRONMENTAL PROJUCTION AGENCY OFFICE OF EMERGENCY AND REMEDIAL RESPONSE C E R C L A

PAGE: 26-8
RUN DATE: 85/07/16
RUN TIME: 20:39:-9

H.2 - SITE MAINTENANCE FORM

	* ACTION: _
PA ID: GAD980559215	
SITE NAME: UNION CAMP CORP SOURCE: N	*
STREET: ALLEN BLVD NEXT TO SEPCO SUBST CONG DIST: 01	*
CITY: SAVANNAH ZIP: 31401	*
CNTY NAME: CHATHAM CNTY CODE: 051	*
LATITUDE: 32/04/36.0 LONGITUDE: 081/07/30.0	*_/_/
SMSA: 7520 HYDRO UNIT: 03060109	*
INVENTORY IND: Y REMEDIAL IND: Y REMOVAL IND: N FED FAC IND: N	*
NPL IND: N NPL LISTING DATE: NPL DELISTING DATE:	*//_
APPROACH: SITE CLASS:	*
SITE/SPILL IDS:	*
RPM NAME: RPM PHONE:	*
DIOXIN TIER: REG FLD1: REG FLD2:	*
RESP TERM: PENDING (X) NO FURTHER ACTION ()	* PENDING (_) NO FURTHER ACTION (_)
ENF DISP: NO VIABLE RESP PARTY () VOLUNTARY RESPONSE ()	*
ENFORCED RESPONSE () COST RECOVERY ()	*
SITE DESCRIPTION:	
	*
	*
	*
	*

Net 1, 928

REGION: 04 STATE: GA

U.S. ENVIRONMENTAL PROJECTION AGENCY OFFICE OF EMERGENCY AND REMEDIAL RESPONSE C E R C L A

PAGE: 26:9 RUN DATE: 85/07/16 RUN TIME: 20:39:49

M.2 - PROGRAM MAINTENANCE FORM

	* ACTION: _	*
ITE: UNION CAMP CORP		
PA ID: GAD980559215 PROGRAM CODE: HOI PROGRAM TYPE:	*	_ *
ROGRAM QUALIFIER: ALIAS LINK :	* <u>-</u>	*
ROGRAM NAME: SITE EVALUATION	*	*
ESCRIPTION:	•	
	* <u></u> -	_ *
•.	*	×
	*	'*
	*	*

X.+1, PJ 9.+11

REGION: 04 STATE : GA

U.S. ENVIRONMENTAL PROJUCTION AGENCY OFFICE OF EMERGENCY AND REMEDIAL RESPONSE C E R C L A

PAGE: 2670 RUN DATE: 85/07/16 RUN TIME: 20:39:39

M.2 - EVENT MAINTENANCE FOR::

			* ACTION: _	•	*
SITE: UNION PROGRAM: SITE I	CAMP CORP EVALUATION				
EPA ID: GAD98	0559215 PROGRAM CODE: HOI	EVENT TYPE: DS1			
FMS CODE:	EVENT QUALIFIER:	EVENT LEAD: E	* _		_ *
EVENT NAME: D	ISCOVERY	STATUS:	*		_ *
DESCRIPTION:	. •	·· •	*		*
		•	*		
			*		*
ORIGINAL	CURRENT	ACTUAL	,		
START:	START:	START:	* _/_/_	_/_/_	_/_/_ *
COMP :	COMP :	COMP : 81/06/01	* _/_/_		_/_/_ *
HQ COMMENT:				·	
RG COMMENT:			*		*
			*		*
COOP AGR #	AMENDMENT # STATUS	STATE %	*		*

(et 1, 82 10 et 11

REGION: 04 STATE: GA

U.S. ENVIRONMENTAL PALLITION AGENCY OFFICE OF EMERGENCY AND REMEDIAL RESPONSE C E R C L A

PAGE: 2651 RUN DATE: 85/07/:6 RUN TIME: 20:39:39

M.2 - EVENT MAINTENANCE FORM

			* ACTION: _		. *
SITE: UNION PROGRAM: SITE E	CAMP CORP VALUATION				
EPA ID: GAD980	559215 PROGRAM CODE: H01	EVENT TYPE: PA1			
FHS CODE:	EVENT QUALIFIER:	EVENT LEAD: S	* _		_ '*
EVENT NAME: PR	ELIMINARY ASSESSMENT	STATUS:	*		_ *
DESCRIPTION:					
			. * <u></u>		*
			*		
			*	·	*
	·		*		*
•					
ORIGINAL	CURRENT	ACTUAL			×
START:	START:	START: 82/09/01	* _/_/_	_/_/_	_/_/ *
COMP :	COMP :	COMP : 82/09/01	* _/_/_	_/_/_	_/_/_ *
но соммент:			*	•	*
RG COMMENT:					
			*		*
COOP AGR #	AMENDMENT # STATUS	STATE %			
			*		×

(at 1, 89 11 .+ 11

Reference No. 4

POTENTIAL HAZARDOUS WASTE SITE IDENTIFICATION AND PRELIMINARY ASSESSMENT

REGION SITE NUMBER (to be as-

MOTE: This form is completed for each potential hazardous waste site to help set priorities for site inspection. The informatic submitted on this form is based on available records and may be updated on subsequent forms as a result of additional inquiries and on-site inspections. The information

GENERAL INSTRUCTIONS: Complete Sections I and III through X as completely as possible before Section II (Preliminary

Accesement). File this form in the Re						onmental Protection ington, DC 20460.			
980559215 CHATHAM			·						
ON CAMP CURP	•	B. STREET(or other identifier)							
EN BLVD NEXT TO SEPCO S		1	·						
THEMS, CHRIS, DIV TEC+	GA 31401 9122365771	<u> </u>	. STATE	E. ZIP CODE	F. Cou	ITY NAME			
1					2. TELE	PHONE NUMBER			
H. TYPE OF OWNERSHIP									
1. FEDERAL 2. STATE	3. COUNTY - 4 MUI	NICIF	AL S	PRIVATE [16	UNKNOWN	··			
•									
"103-C GUTIFICATION"	DATE: 81060	9			· · · · · · · · · · · · · · · · · · ·	· .			
JIM SETZER PHUNE: 474-656-2833				•		(mo., day, & yr.)			
					2. TELE	PHONE NUMBER			
IL	PRELIMINARY ASSESSM	MENT	(complete ti	his section last)	-J				
A. APPARENT SERIOUSNESS OF PROBLE		N.E.		INKNOMN					
B. RECOMMENDATION									
1. NO ACTION NEEDED (no hexard)			12 IMMED	HATE SITE INSPE TAT VELY SCHEE	CTION NEI	EDED 3.			
3. SITE INSPECTION NEEDED a. TENTATIVELY SCHEDULED FO	·A:		b. WILL	BE PEPFORMED	- 8 V :				
b. WILL BE PERFORMED BY:				NSPECTION NEED	DED (low pr	iority)			
C. PREPARER INFORMATION									
1. NAME .	·		2. TELE	PHONE NUMBER		3. DASE (mo., day, & yr.)			
	III. SITE	INFO	DRMATION						
	2. INACTIVE (Those elies which no longer received	120] (Those elles th	imi include such in	cidenia liki e site for w	"midnight dumping" where aste disposal has occurred.)			
B. IS GENERATOR ON SITE?	2. YES (apoclly go	enerat	or's four-digit	stC Code):					
	D. IF APPARENT SERIOU: 1. LATITUDE (deg.—min,—		S OF SITE IS			ES _minsec.)			
E. ARE THERE BUILDINGS ON THE SITE	•				· · · · · · · · · · · · · · · · · · ·				

Ref 1, pg 3 of 11.

Continued From Front

IV. CHARACTERIZATION OF SITE ACTIVITY															
Indicate the major site activity(ies) and details rela						relating to each a	ctiv	rity by marking 'X' is	n th	e app		iste boxes	<u>. </u>		
Ě	A. TRANSPOR	DRTER			В.	STORER	Ě	C. TREATER		×	D. DISPOSER		ISPOSER		
	1. RAIL			1. PILE				. FILTRATION	TION			. LANDFII			
L.	2. SHIP					IMPOUNDMENT		. INCINERATION				2. LANDFARM			
 _	3. BARGE			3. DRUM	3		\vdash	. VOLUME REDUCT	DN		\vdash	OPEN DI			
_	4. TRUCK			4. TANK	. A I	OVE GROUND	Ц	4. RECYCLING/RECO	VE	RY		. SURFAC	E 11	MPOUNDMENT	
_	S. PIPELINE			B. TANK	. 86	LOW GROUND	Ц	S. CHEM./PHYS. TRE	AT	MENT		S. MIDNIGH	T 6	DUMPING	
_	6. OTHER (specify):		L	_]6. OTHE	R (ipecify):	\rightarrow	6. BIOLOGICAL TREA		$\overline{}$. INCINER	AT	ION	
			- 1					. WASTE OIL REPRO	CE	BING		. UNDERG	RO	UND INJECTION	
l			l'				-	. SOLVENT RECOVE	PY		A. OTHER (specify):				
l			- I				Ш	P. OTHER (apecily):			ŀ				
									•					• • • • • • • • • • • • • • • • • • •	
Ε.	SPECIFY DETAILS	OF	SITE ACT	IVITIES A	5 N	EEDED									
l															
1	\														
														1	
-						V. WASTE RELAT	Fn	INFORMATION					_		
Ā.	WASTE TYPE	_				** "*** KEEN		Vinna I IVII					_		
] I UNKNOWN []]2	riguid	<u>_</u>];	s. s c	DLID []4.	SLU	DGE	AS						
В.	WASTE CHARACTE	RIST	rics				_						_		
]1. UNKNOWN []2.	CORROSI	VE 🔲	1. 10	NITABLE 34	RAD	IOACTIVES H	1GH	LY VC	LA	TILE			
]7	REACTIV	E 🗍	11	ERT []9	FLA	MMABLE							
] 10. OTHER (specif	y):					_								
	WASTE CATEGORIE														
1	. Are records of wast	es 4	ivatiable?	Specify it	em \$	such as manifests, i	nve:	ntories, etc. below.				•			
2	. Estimate the amo	unt	(apecily	unit ol me	# S U	re)of waste by cat	ego	ry; mark 'X' to indica	ale	which	We	stes are p	res	ent.	
	a. SLUDGE		ъ. ОІ	L	c. SOLVENTS		T	d. CHEMICALS	Г	e. 9	SOL	DS.		I. OTHER	
AM	OUNT	AM	TNUO		AMOUNT		A	AMOUNT		OUNT			AMOUNT		
	· · · · · · · · · · · · · · · · · · ·	_			_		1						L		
UN	T OF MEASURE	UN	IT OF ME.	ASURE	"	IT OF MEASURE	0	UNIT OF MEASURE		IT OF	ME	ASURE	UNIT OF MEASURE		
		<u> </u>	 _		L		┸		L_,				L		
×.	ID PAINT,	x.	(1) OIL Y		.×.	ITIHALOGENATED	Ľ×		×	O FE	Y A 5	н :	' X '	11 PHARMACEUT.	
	PIGMENTS	<u> </u>	WA311		 	SOLVENIS	4.	i	Н						
	(2) METALS SLUDGES		(2) O THE	M(apocily):		121 NON-HALOGNTI	, 	(2) PICKLING LIQUORS		:21 AS	B E 5	TOS		IZI HOSPITAL	
\dashv					\vdash	(3) OTHER(specify)	十		H	133 MIL		.c.			
_	(3) POTW)(3) OTHER(Specify)	L	131 CAUSTICS				AILINGS		(3) RADIOACTIVE	
	(4) A LUMINUM SLUDGE							(4) PESTICIDES		(4) FE SM	RRC	US . WASTES		(4) MUNICIPAL	
	15) OTHER(*pacify):							IBIDYES/INKS		15, NO	N- F L T G	ERROUS . WASTES		(B) OTHER(apacily):	
						(6) CYANIDE	口			(specify):					
				a				171 PHENOLS							
	i							18) HALOGENS							
	!						-	(0) PCB							
								ITOIME TALS							
		-						(1110THER(*pecify)							
					}				}						

Ref 1, pg 4 of 11

& EPA

POTENTIAL HAZARDOUS WASTE SITE IDENTIFICATION AND PRELIMINARY ASSESSMENT

REGION SITE NUMBER (to be as-

IDENTIFICATION AND PRELIMINARY ASSESSMENT "OTE: This form is completed for each potential hazardous waste site to help set priorities for site inspection. The information mitted on this form is based on available records and may be updated on subsequent forms as a result of additional inquiries 1 on-aite inspections. GENERAL INSTRUCTIONS: Complete Sections I and III through X as completely as possible before Section II (Preliminary Assessment). File this form in the Regional Hazardous Waste Log File and submit a copy to: U.S. Environmental Protection Agency; Site Tracking System; Hazardous Waste Enforcement Task Force (EN-335); 401 M St., SW; Washington, DC 20460. I. SITE IDENTIFICATION A. SITE NAME B. STREET (or other identifier) UNION CAMP CORP. ALLEN BLYD NEXT TO SERCO SUBST. F. COUNTY NAME E. ZIP CODE SAVANNAH G. OWNER/OPERATOR (II Anoun 31401 CHATHAM DIV. TECH DIR. 912 236 5771 MATTHEWS, CHRISTOPHER ☐1. FEDERAL ☐2. STATE ☐3. COUNTY ☐4. MUNICIPAL ☐6. UNKNOWN I. SITE DESCRIPTION PILES, DRUMS BELOW GIZOUND 1936-62 J. HOW IDENTIFIED (i.e., citisen's complaints, OSHA citations, etc.) K. DATE IDENTIFIED (mo., day, & yr.) NOTIFICATION L. PRINCIPAL STATE CONTACT 404 656-2833 II. PRELIMINARY ASSESSMENT (complete this section lest) APPARENT SERIOUSNESS OF PROBLEM X 1. HIGH 2. MEDIUM 3. LOW 4. NONE 5. UNKNOWN . RECOMMENDATION I 1. NO ACTION NEEDED (no hazard) 2. IMMEDIATE SITE INSPECTION NEEDED a. TENTATIVELY SCHEDULED FOR: 3. SITE INSPECTION NEEDED a. TENTATIVELY SCHEDULED FOR: L WILL BE PERFORMED BY: S. WILL BE PERFORMED BY: 4. SITE INSPECTION NEEDED (low priority) C. PREPARER INFORMATION 2. TELEPHONE NUMBER 3. DATE (mo., day, & yr.) 404 656-283 JIM USSERY III. SITE INFORMATION A. SITE STATUS A 2. INACTIVE (Those sites that include such incidents like "midnight dumping" where wastes.). 1. ACTIVE (Those Industrial or municipal sites which are being used for waste treatment, storage, or disposal on a continuing basis, even if infrequently.) B. IS GENERATOR ON SITE? [X] 1. HO 2. YES (apecify generator's four-digit SIC Code): C. AREA OF SITE (in acres) D. IF APPARENT SERIOUSNESS OF SITE IS HIGH, SPECIFY COORDINATES 1. LATITUDE (def.-min-sec.) 2. LONGITUDE (deg._min._sec.) 2. YES (epecity):

Rof 1, pg 5 of 11 ...

U o	Continued From Front															
IV. CHARACTERIZATION OF SITE ACTIVITY																
Indicate the major site activity(les) and details relating to eac								_	ty by marking 'X' i	n t		ate boxes	<u> </u>			
Ě	. A. TRANSPOR	TE	R	×1		STORER	Ě	L	C. TREATER	.		D. DISPOSER			ER	
-	1. RAIL			1. PILE		E IMPOUNDMENT	Н	1. FILTRATION				1. LANDFILL				
_	3. BARGE			a. DRU		I IMPOUNDMENT	Н	-	VOLUME REDUCT	<u> </u>		B. OPEN DUMP				
\vdash	4. TRUCK					OVE GROUND	Н	╌	RECYCLING/RECO			SURFAC	_		OMENT	
┝	S. PIPELINE	_				LOW GROUND	Н	⊢	CHEM./PHYS. TRE			MIDNIGH				
┢	6. OTHER (specify):					specify):	Н	┢	BIOLOGICAL TREA			INCINER			<u> </u>	
Г	j		- t				Н	┝-	WASTE OIL REPRO	_		. UNDERGROUND INJECTIO				
1			- 1				П		SOLVENT RECOVE	RY	X.	S. OTHER (epocity):				
1			1					٠.	OTHER (opecity):						DELOW	
ı							ŀ					ROUN			.00	
<u> </u> _				********			L						_			
₽	SPECIFY DETAILS	OF	SITE ACT	TIVITIES	(\$ N	EEDED									•	
l																
{																
ł																
┝						V. WASTE RELAT	-50	_	NEGRUATION	-			-			
\	WASTE TYPE					V. WASTE RELAT	EU	<u>, , , , , , , , , , , , , , , , , , , </u>	MPORMATION	_						
ζ	X 1. UNKNOWN	(]2	LIQUID	ø	3. S(OLID 🖂 .	SLU	۵۲	GE 🗀s G	AS						
┪.	WASTE CHARACTE	RIS	TICS	<u> </u>						<u> </u>						
	X 1. UNKHOWN D	· -		IVE	3. 10	INITABLE TA	RAI	אם	DACTIVE TIL H	IGH	ILY VOLAT	ILE				
				VE 🗀					MABLE							
	_			<u></u>		71										
ַ	10. OTHER (epocit	y) :														
c.	WASTE CATEGORIE	5	!	Sanal/a I		such se manifests, i		_	arian ata balam							
,	No	•.	eaerre di 61	эреспу 1	(6 m +	egen es manifests, i	nve		pres, etc. pelow.		•					
L	Estimate the amo	ומט	(specify	unit of me	84 BU	re)of waste by cat	ego	УTУ	; mark 'X' to indic	ate	which was	tes are p		ent.		
_	a. SLUDGE	L	B. O	IL.	1.	e. SOLVENTS	4.	d. CHEMICALS			e, SOLIE	0\$			THER	
 ^^	OUNT	 ^ `	HOUNT		1^	3000	ľ	3,000			AMCHINT			OUNT		
U	IT OF MEASURE	U	II OF ME	AJURE	U	IT OF MEASURE			UNIT OF MEASURE		SURE	JZ.	IT OF	MEASURE		
	_	Ì				FT3	Ì	FT3								
×.	(I) PAINT.	×	(1) OILY		╁┰	, 	1,	x-I		×	1		×		OPATORY .	
	PIGMENTS	Г	WAST	Es		(1) HALOGENATED SOLVENTS	b	X	(1) A CIDS	۳	(1) FLYASH	•		(1) PH	BORATORY ARMACEUT.	
1	(2) METALS		(2) OTHE	R(specify		(2) NON-HALDENT	Ţ	7	(2) PICKLING							
	SLUDGES	Г			L	SOLVENTS	1		LIQUORS	L	(2) ASBEST	08		1219101	PITAL	
Г	(3) POTW					(3) OTHER (specify)		٦	(S) CAUSTICS	Г	(S)MILLIN			(3) 84	DIOACTIVE	
<u>L</u>		•			Г		L	_	(S) CAUSTICS	L	MINE T	AILINGS	Ц			
1	(4) ALUMINUM							Ì	(4) PESTICIDES		(4) PERROL	US.		(4) MUI	VICIPAL	
L.	SLUDGE	l			ı		L	4		L	SMLTG.	WASTES	L			
┝	(B) OTHER(specify):						L		(8) DYES/INKS		(B) NON-FE	RROUS WASTES	H	(B) OT	HER <i>(specity):</i>	
l							ſ		(6) CYANIDE	H	(6) OTHER	(epecity):				
		•			1		r	┪		1						
•	,	}					1	-	(7) PHENOLS	l						
l								1	(8) HALOGENS							
1							+	4	(9) PC B	1						
					ľ		-	_}	(e) FCB	}						
)		(10) METALS							
1								ΧŢ	(11) OTHER (epocity)							
Į		1				•			DEGANICS	l						

V. WASTE RELATED INFORMATION (continued)
3. LIST SUBSTANCES OF GREATEST CONCERN WHICH MAY BE ON THE SITE (place in descending order of hezerd).

DOT , RADIO ACTIVE WASTE

4. ADDITIONAL COMMENTS OR NARRATIVE DESCRIPTION OF SITUATION KNOWN OR REPORTED TO EXIST AT THE SITE.

NUNF

VI. HAZARD DESCRIPTION							
A. TYPE OF HAZARD	B. POTEN- TIAL HAZARD (mark 'X')	C. ALLEGED INCIDENT (merk 'X')	D. DATE OF INCIDENT (mos.day.yr.)	E. REMARKS			
1. NO HAZARD							
2. HUMAN HEALTH							
3. NON-WORKER INJURY/EXPOSURE							
4. WORKER INJURY							
B. CONTAMINATION B. OF WATER SUPPLY							
CONTAMINATION OF FOOD CHAIN			ı				
7. CONTAMINATION OF GROUND WATER	X						
8. CONTAMINATION 8. OF SURFACE WATER				·			
9. DAMAGE TO FLORA/FAUNA							
to. FISH KILL							
11. CONTAMINATION OF AIR							
12. NOTICEABLE ODORS							
13. CONTAMINATION OF SOIL	X						
14. PROPERTY DAMAGE							
18. FIRE OR EXPLOSION							
16. SPILLS/LEAKING CONTAINERS/ RUNOFF/STANDING LIQUIDS							
17. SEWER, STORM DRAIN PROBLEMS							
18. EROSION PROBLEMS		-					
19. INADEQUATE SECURITY							
20. INCOMPATIBLE WASTES							
21. MIDNIGHT DUMPING							
2.2. OTHER (#pocify):							
·		1					

Continued From Front VII. PERMIT INFORMATION A. INDICATE ALL APPLICABLE PERMITS HELD BY THE SITE. . I. NPDES PERMIT . 2. SPCC PLAN 3. STATE PERMIT (apocity): ___ 4. AIR PERMITS S. LOCAL PERMIT 6. RCRA TRANSPORTER 8. RCRA TREATER 5 9 RCRA DISPOSER 7. RCRA STORER 10. OTHER (specify): NON E B. IN COMPLIANCE! M 3. UHKHOWH [1. YES 4. WITH RESPECT TO (list regulation name & number) VIII. PAST_REGULATORY ACTIONS A. NONE IX. INSPECTION ACTIVITY (past or on-going) A. NONE B. YES (complete items 1,2,3, & 4 below) 2 DATE OF PAST ACTION (mos, day, & yrs) I. TYPE OF ACTIVITY 4. DESCRIPTION (EPA/SIALE) X. REMEDIAL ACTIVITY (past or on-going) B. YES (complete items 1, 2, 3, & 4 below) X A. NONE 2. DATE OF PAST ACTION (mo., day, & yr.) 3. PERFORMED I. TYPE OF ACTIVITY 4. DESCRIPTION (EPA/State) NOTE: Based on the information in Sections III through X, fill out the Preliminary Assessment (Section II)

EPA Form T2070-2 (10-79)

information on the first page of this form.

PAGE 4 OF 4

Ref 8, 89 1 of 8

Reference No. 5

___urtment of Natural Resources

205 Butler Street, S.E., Floyd Towers East, Atlanta, Georgia 30334

TRIP REPORT

J. Leonard Ledbetter, Commissioner Harold F. Reheis, Assistant Director Environmental Protection Division

November 29, 1988

SITE NAME AND LOCATION:

Union Camp Corporation Allen Boulevard

Savannah, GA 31401

EPA ID NUMBER:

GAD980559215

COUNTY:

Chatham

TRIP BY:

Randy Dominy Environmental Specialist Site Assessment Unit

ACCOMPANIED BY:

Elizabeth Topp Environmental Specialist

Site Assessment Unit

DATE AND TIME OF INVESTIGATION:

August 25, 1988 1:00 p.m. 90°F - sunny, hot

OFFICIALS CONTACTED:

Thomas J. Dillon
Associate General
Counsel and
Assistant Secretary
Union Camp Corporation
P.O. Box 1391
Savannah, GA 31402

Alan R. Jones
Division Technical Director
Union Camp Corporation
P.O. Box 570
Savannah, GA 31402

Charles Beacham Process Engineer Union Camp Corporation Savannah, GA 31402

Georgia - EPD State Files: Union Camp Corporation GAD980559215

REFERENCE:

-

TRIP REPORT
Union Camp Corporation
Randy Dominy
November 29, 1988
Page Two

COMMENTS:

Elizabeth Topp and I met with Union Camp officials to discuss the sampling plan before proceeding to the landfill. Mr. Beacham accompanied us during all phases of the sampling, both on- and off-site, to obtain split samples.

Initially, a waste sample was collected from the top of the landfill for characterization and identification. The residue resembled wood pulp waste and possessed a "tar-like" consistency.

Three soil borings, 6 inches in depth, were collected to the northwest of the landfill and composited. This area was located beyond the drainage ditch and appeared to be the least disturbed.

A surface water sample was collected from the unlined drainage ditch located on the northwestern site of the landfill. This ditch is a potential recipient of waste via runoff and/or leaching from the landfill.

Groundwater was collected from a hand-augered 4-foot boring on the northwest side of the landfill.

Background samples of both soil and groundwater were collected approximately 2.4 miles northwest of the site adjacent to U.S. Highway 17. A private well, depth unknown, and owned by Mr. Stanley Barras at (b) (6) in (b) (6) , provided a groundwater sample. Background soil was collected from a wooded area at a depth of six inches.

All samples were collected and placed on ice from transport to the EPD laboratory for analyses.

CONCLUSIONS:

- (- () - ()

No conclusions can be made until laboratory analyses are completed.

RECOMMENDATIONS AND FOLLOW-UP REQUIRED:

-Send copy of laboratory results to Union Camp.

PHOTOGRAPHS: Five (5) Polaroids

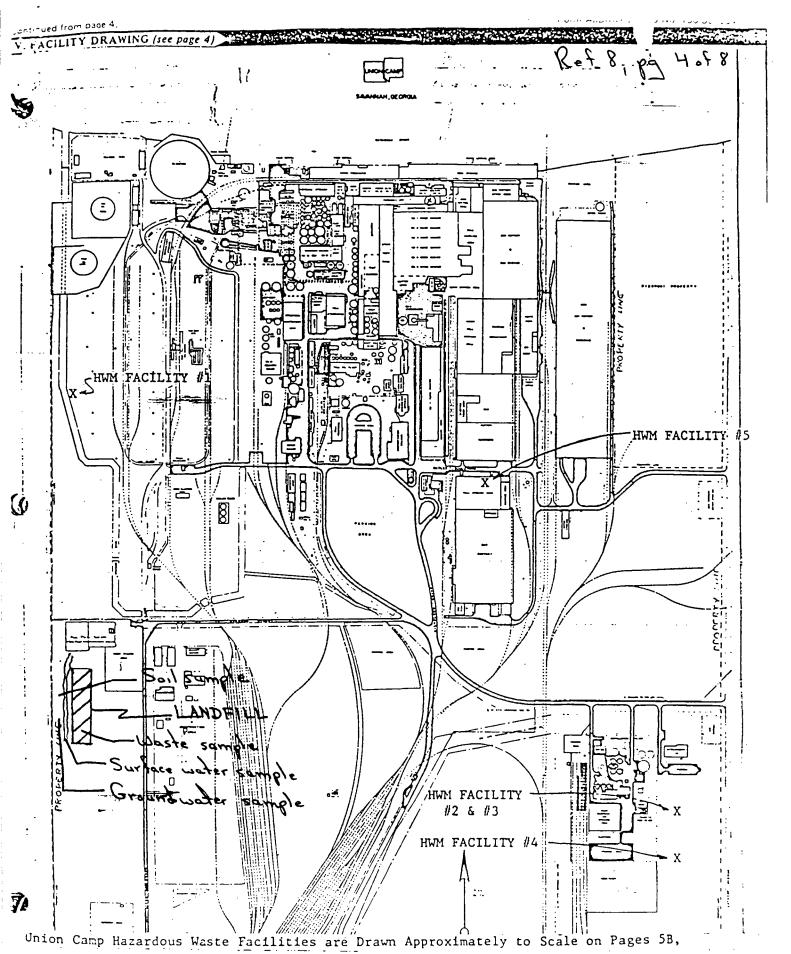
NUMBER OF WASTE/ENVIRONMENTAL SAMPLES TAKEN: Six (6)

REVIEWED BY: Marlin R. LAtschold DATE: December 22, 1988

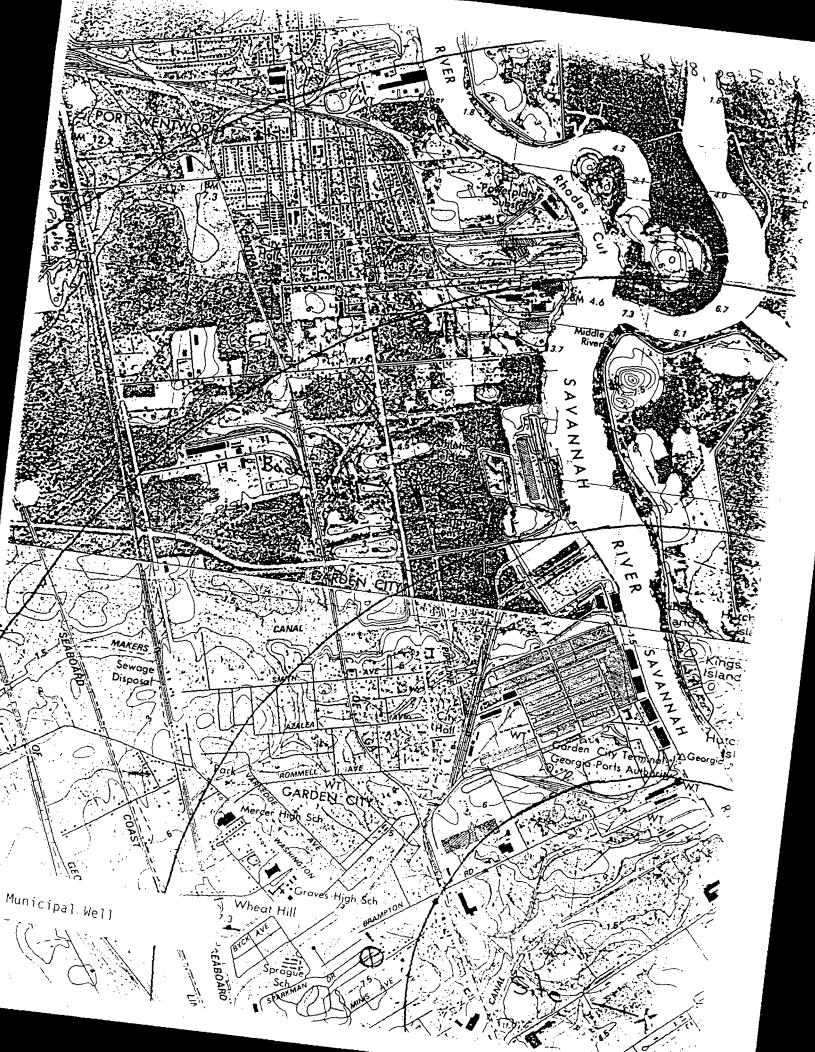
TRIP REPORT Union Camp Corporation Randy Dominy November 29, 1988 Page Three

ATTACHMENTS:

Site Location Map Site Sketch


Photographs (5)

RED: tme/1/24


File - Union Camp Corporation (GAD980559215)

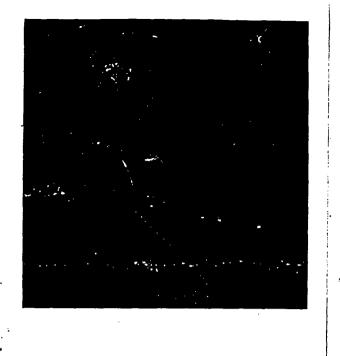
SIP -

4/87R

5C and 5D. Their Relationship to Property Boundaries is Shown By This Plant Layout. Refer to topographic map of Form 1, item XI for complete property boundaries.

County Name Chatham R9618
Picture No. \ of 5
Site Name Union Come
Date 8 25 88 Weather 90°F - sum
Direction Facing North
Photographer Flizabeth Tage
Program Site Investigation
Explanation Waste sample from
lither to got
Other
·

County Name Chatham
Picture No. 2 of 5
Site Name Union Como
Date 8 25 8 Weather 90 F-suns
Direction Facing North east
Photographer Elizabeth Topp
Program Site Investigation
Explanation On-site soil
composite
Other



County Name Chatham Ref 87.658
Picture No. 3 of 5
Site Name Union Come
Date 8 25 88 Weather 90 F- sunny
Direction Facing North
Photographer Elizabeth Topp
Program Site Investigation
Explanation Site of on-site
water sample from ditab
adjacent to landfill.
Other
,

County Name Chatham
Picture No. 4 of 5
Site Name Union Camo
Date 8 25 88 Weather 90 F-sunny
Direction Facing South -
Photographer Elizabeth Topp
Program Site Investigation
Explanation On-site grandwater
Sample.
Other

٠:

County Name Chatham Ret	1, 8. F. F.
Picture No. 5 of	<u>. </u>
Site Name Union Come	
Date 8 25 88 Weather 90 F	- Sunny
Direction Facing West	~
Photographer Elizabeth To	00
Program Site Investigat	7 02
Explanation Rad ground soil	
sample	
Other	- ·
	•

County Name	
Picture No	
Site Name	·
Date	Weather
Direction Facing	
Photographer	
Program	·
Explanation	
	·
Other	·
	·····

. !

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IV

345 COURTLAND STREET, N.E ATLANTA, GEORGIA 30365

March 31, 1993

Ms. Susan Rusher Site Manager Dynamac Corporation 230 Peachtree Street, N.W., Suite 500 Atlanta, GA 30303

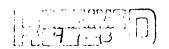
RE: 4-RIN-00834-93

Dear Ms. Rusher:

This is in response to your Freedom of Information Act (FOIA) request regarding Federal Reporting Data Systems Report on Chatham County, Georgia.

Please find enclosed the requested material.

Fees are waived as de minimis.


Should you have questions, please contact me at 404/347-4450.

Sincerely yours,

Len Dangerfield, FOIA Coordinator

Water Management Division

Enclosure

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y PWS ID: GAO510000

SYSTEM NAME : GARDEN CITY

SYSTEM ADDRESS: CITY OF GARDEN CITY >

PHONE: (912) 966-7777

POB 7548

DEN CITY

GA 31418

GRANT ELIGIBLE STATUS PLANT TYPE

OWNER TYPE

CAC : C

ADDRESSES: NONE

PLANT SERVICE AREA:

(* INDICATES PRIMARY SERVICE AREA)

ΙD

MAJOR CATEGORY

SUBCATEGORIES

01 *RESIDENTIAL

VISITS: NONE

REGULATE BY

SURFACE %

ACTIVE INDICATOR : POPULATION SERVED: 7,410 S

INV UPDATE DATE : 03/17/93 NUMBER OF SERVICES: 2,800 INV INSERT DATE : 03/12/80

GROUND %

BEGIN DATE : SEASON START :

LAST UPDATE DATE: 03/17/93

DEACTIVATION DATE: SEASON END

PRIMARY SOURCE PUR GROUND %

GEOGRAPHIC AREAS SERVED :

ADMIN ADMIN ΙD REGION DIST --------01

CONG STATE DIST 80

FIPS COUNTY COUNTY 051 051

INDIAN MSA RESV CD

PUR SURFACE % :

SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION:

DATA -- TREATMENTS ------TYPE ID NAME CODE AVAIL ORG LAT LONG SELLER ID ID OBJECTIVE PROCESS SRC 101 DRILLED WELL #1 G P 0320648 0810912 01 DISINFECTION GASEOUS CHLORINATION, POST SRC 102 DRILLED WELL #2 G P S
SRC 103 DRILLED WELL #3 G P S
SRC 104 DRILLED WELL #4 G P S
SRC 105 DRILLED WELL #5 G P S 0320708 0810858 01 DISINFECTION GASEOUS CHLORINATION, POST s 0320526 0810902 s 0320514 0810902 0320607 0810858 01 DISINFECTION GASEOUS CHLORINATION, POST 01 DISINFECTION GASEOUS CHLORINATION, POST S 01 DISINFECTION GASEOUS CHLORINATION, POST

LOCATE STATEMENT:

LOCATE (0) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

3 PAGE

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510000

-----VARIANCE OR EXEMPTION-----VAR/EXMP VAR/EXMP CONTAMINANT ΙD MODIFIED MCL

-----ENFORCEMENTS-----LEGAL

STATUS DATE ΙD

RELATED VIOLS

09/30/86 86E0001 09/30/84 84E0001 86V0001 84V0001

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE

EPA REGION: 04

PRIMACY: Y

PWS ID: GA0510000

			VIOLA	TIONS	}						VIOLA	TIONS	S	
CONT 1D TY	BEGIN DATE	DUR	AWARE Date	SMP TKN	ANALYTICAL . Result	V10	CONT	TY	BEGIN Date	DUR	AWARE DATE	SMP	ANALYTICAL RESULT	V10 1D
													REJUL!	
3000 03	10/01/85	001		000		86V0001	3000	03	06/30/84	001		007		84V0001

"FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP.

NO SORT REQUESTED

PAGE

EPA REGION: 04

PRIMACY STATE: GA

PWS ID: GA0510003 PRIMACY: Y

SYSTEM NAME : SAVANNAH-MAIN

PHONE: (912) 651-6415

SYSTEM ADDRESS: CITY OF SAVANNAH POB 1027

ANNAH GA 31402 GRANT ELIGIBLE

OWNER TYPE

STATUS PLANT TYPE

: CAC C

ADDRESSES: NONE

PLANT SERVICE AREA:

(* INDICATES PRIMARY SERVICE AREA)

ΙD

MAJOR CATEGORY

SUBCATEGORIES

01

*RESIDENTIAL

VISITS: NONE

SURFACE %

ACTIVE INDICATOR :: POPULATION SERVED: REGULATE BY

150,558

INV UPDATE DATE : NUMBER OF SERVICES:

GROUND %

03/17/93 57,907 03/12/80 INV INSERT DATE :

BEGIN DATE

SEASON START LAST UPDATE DATE: 03/17/93

PUR SURFACE % :

DEACTIVATION DATE:

SEASON END PRIMARY SOURCE PUR GROUND X

GEOGRAPHIC AREAS SERVED :

	ADMIN	ADMIN	CONG	STATE	FIPS		INDIAN	
ID	REGION	DIST	DIST	COUNTY	COUNTY	MSA	RESV CD	CITY
01		•	01	051	051			

SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION:

					DATA						TREATMENTS
TYPE	ID	NAME:	CODE	AVAIL	ORG	LAT	LONG	SELLER I	ID	OBJECTIVE	PROCESS
SRC	101	DRILLED WELL #1	G	P	5	0320130	0810447		01	DISINFECTION	GASEOUS CHLORINATION, POST
SRC	102	DRILLED WELL #2		, b	č		0810651		01	DISINFECTION	GASEOUS CHLORINATION, POST
				(3		0810643		01		
SRC	103	DRILLED WELL #3		P	5					DISINFECTION	GASEOUS CHLORINATION, POST
SRC	104	DRILLED WELL #4	G	P	S	0320404	0810621		01	DISINFECTION	GASEOUS CHLORINATION, POST
SRC	105	DRILLED WELL #5	G	Ρ	S	0320352	0810549		01	DISINFECTION	GASEOUS CHLORINATION, POST
SRC	106	DRILLED WELL #6	Ġ	è	Š	0320027	0810531		01	DISINFECTION	GASEOUS CHLORINATION, POST
SRC	107	DRILLED WELL #7		į.	č		0810503		Ŏ1	DISINFECTION	GASEOUS CHLORINATION, POST
				r_	3.						
SRC	108	DRILLED WELL #8		P	S,		0810400		01	DISINFECTION	GASEOUS CHLORINATION, POST
SRC	109	DRILLED WELL #9	G	P	S	0320221	0810612		01	DISINFECTION	GASEOUS CHLORINATION, POST
SRC	110	DRILLED WELL 10	G	P	S	0320525	0810745		01	DISINFECTION	GASEOUS CHLORINATION, POST
SRC	111	DRILLED WELL 11		P	Š	0320351	0810332		01	DISINFECTION	GASEOUS CHLORINATION, POST
SRC	112	DRILLED WELL 12		B	č		0810558		01	DISINFECTION	GASEOUS CHLORINATION, POST
				Ľ	3						
SRC	113	DRILLED WELL 13		P	5		0810659		01	DISINFECTION	GASEOUS CHLORINATION, POST
SRC	114	DRILLED WELL 14	G	P	S	0315825	0810826		01	DISINFECTION	GASEOUS CHLORINATION, POST
SRC	115	DRILLED WELL 15	G	P	S	0315921	0810839		01	DISINFECTION	GASEOUS CHLORINATION, POST
SRC	116	DRILLED WELL 16		D	ě		0810257		01		GASEOUS CHLORINATION, POST
					3						
SRC	123	DRILLED WELL 23	G	P	S	0312802	0810912		01	DISINFECTION	GASEOUS CHLORINATION, POST

SRC 125 DRILLED WELL 25 G P S 0320221 0810853 01 SRC 126 DRILLED WELL 26 G P S 0315628 0810856 01 SRC 127 DRILLED WELL 27 G P S 0315910 0810919 01 LOCATE STATEMENT:

LOCATE (0) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C: O1 DISINFECTION O1 DISINFECTION O1 DISINFECTION GASEOUS CHLORINATION, POST GASEOUS CHLORINATION, POST GASEOUS CHLORINATION, POST

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 10

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510003

				VIOLA	TIONS	S						VIOLA	TIONS	S	
CONT		BEGIN		AWARE	SMP	ANALYTICAL	AIO	CONT		BEGIN		AWARE	SMP	ANALYTICAL	VIO
ID	ΤY	DATE	DUR	DATE	TKN	RESULT	ID	ID	ΤY	DATE	DUR	DATE	TKN	RESULT	ID
5000	51	07/01/92	006				9399991								

FEDERAL REPORTING DATA SYSTEM - FRDS-11 03/26/93 ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. FRDS35 PAGE 28 NO SORT REQUESTED EPA REGION: 04 PRIMACY: Y PWS ID: GA0510014 PRIMACY STATE: GA SYSTEM NAME : AZALEA MOBILE HOME PLAZA PHONE: (912) 234-2811 SYSTEM ADDRESS: TRANS-WORLD INVESTMENT CO GRANT ELIGIBLE 4711 OGEECHEE RD. STATUS CAC ANNAH GA 31405 PLANT TYPE OWNER TYPE ADDRESSES: NONE PLANT SERVICE AREA: (* INDICATES PRIMARY SERVICE AREA) ΙD MAJOR CATEGORY SUBCATEGORIES ---------*MOBILE HOME PARK 01 RESIDENTIAL VISITS: NONE 03/17/93 196 ACTIVE INDICATOR : INV UPDATE DATE : BEGIN DATE DEACTIVATION DATE: NUMBER OF SERVICES: 475 SEASON START POPULATION SERVED: SEASON END INV INSERT DATE : 03/12/80 REGULATE BY S LAST UPDATE DATE: 03/17/93 PRIMARY SOURCE GROUND % PUR SURFACE % : SURFACE % PUR GROUND % GEOGRAPHIC AREAS SERVED : ADMIN ADMIN CONG STATE FIPS INDIAN

SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION:

DIST

COUNTY

051

COUNTY

051

DIST

ΙD

01

REGION

TYPE	ID	NAME	CODE	AVAIL	DATA ORG	LAT	LONG	SELLER ID	I D	OBJECTIVE	TREATMENTS
SRC SRC SRC	101 102 103	DRILLED WELL #1 DRILLED WELL #2 DRILLED WELL #3	G	P P P	S S S	0320235	0811049 0811049 0811049		01 01 01	DISINFECTION DISINFECTION DISINFECTION	HYPOCHLORINATION, POST HYPOCHLORINATION, POST HYPOCHLORINATION, POST

RESV CD

CITY

FEDERAL REPORTING DATA SYSTEM - FROS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 29

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510014

-----VARIANCE OR EXEMPTION-----CONTAMINANT ID

MODIFIED MCL

VAR/EXMP VAR/EXMP

-----ENFORCEMENTS-----LEGAL

STATUS DATE ΙD RELATED VIOLS

SIE 01/17/90 9090001

9089001

FEDERAL REPORTING DATA SYSTEM — FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 30

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510014

CONT BEGIN AWARE SMP ANALYTICAL VIO CONT BEGIN AWARE SMP ANALYT	
ID TY DATE DUR DATE TKN RESULT ID ID TY DATE DUR DATE TKN RESU	
3100 23 10/01/91 001 9200002 3000 03 12/01/89 001 01/17/90 000	

03/26/9 FRDS35							NUAL D	ATA E	VALUAT R DYN/	TION R	REPO	RT	and embermann, on grandfallening	erfilippingen prigil delimentermogen med en eine 🦿 politicogram mediaprima	PAGE	33
EPA RE	GION: 04	4	PRIMAC	Y STATE	: GA	PRIMACY:	Y	PWS I	D: GA	51001	17 ·			•		
	SYSTEM SYSTEM		: CROSB	Y MOBILE	ESTATES ESTATES ROAD		GA 3		PHONI	E: (91	12)	232-1221		GRANT ELIGIBLE STATUS PLANT TYPE OWNER TYPE	:	Y CAC C 2
ADDR	ESSES:	NONE			_											
PLAN	T SERVI	CE AREA:		(* 1	NDICATES	PRIMARY	SERVI	CE AR	EA)							
	ID			CATEGORY	,	. •	UBCATE	GORIE	s ·							
	01		RESIDE			*MOBIL	E HOME	PARK								
VISI	TS: NO	NE														
POPU REGU		CATOR < SERVED:		86 S	INV UPDA NUMBER O INV INSE GROUND %	TE DATE F SERVIC RT DATE	ES:	03/17 03/12	/93 33 /80	LAS	T UP	ATE : START : DATE DATE: O FACE % :	3/17/93	DEACTIVATION DATE: SEASON END PRIMARY SOURCE PUR GROUND %		G
GEOGRAP	HIC ARE	AS SERVE	D :													
ID	ADMII REGI	ON DI	MIN ST		STATE COUNTY	FIPS COUNTY	/ M	 1SA		DIAN SV CD		CITY				
01				01	051	051					_					
SOURCE	(SRC) /	ENTRY PO	INT (EP	T) /PLAN	IT (PLT)	INFORMAT	ION:									
TYPE I	D NAME		COD	E AVAIL	DATA ORG	LAT	LONG	SE	LLER	1D	1D	OBJECTIVE		REATMENTS		
SRC 10	1 DRIL	LED WELL	. #1 G	P	s	0320140	081112	25			01	DISINFECTION		HYPOCHLORINATION, POS	ST .	

FEDERAL REPORTING DATA SYSTEM FROS-II
ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE

EPA REGION: 04

ID

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510017

-----VARIANCE OR EXEMPTION-----VAR/EXMP VAR/EXMP

MODIFIED MCL

-----ENFORCEMENTS-----LEGAL

STATUS DATE

ID

RELATED VIOLS

\$IA 09/30/86 86E0001 \$IE 09/30/86 86E0002

86V0001 8670001

03/26/93 FRD\$35

FEDERAL REPORTING DATA SYSTEM — FRDS-II — ANNUAL DATA EVALUATION REPORT FOIA, #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 35

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y

|--|

				VIOLA	TIONS							VIOLA	TIONS		
CONT ID	TY	BEGIN DATE	DUR	AWARE DATE	SMP TKN	ANALYTICAL Result	OIV OIV	CONT ID	TY	BEGIN Date	DUR	AWARE DATE	SMP TKN	ANALYTICAL Result	VIO ID
3000 3000 3000	03 03 03	12/01/85 11/01/80 02/01/81 05/01/80 07/01/80	001 001 001		000		86V0001 8102639 8102641 8002815 8002817	3000 3000 3000	03 03 03	10/01/80 12/01/80 04/01/80 06/01/80 09/01/80	001 001 001				8102638 8102640 8002814 8002816 8002818

FEDERAL REPORTING DATA SYSTEM - FRDS-II " 03/26/93 ANNUAL DATA EVALUATION REPORT FRDS35 FOIA #834MFOR DYNAMIC CORP. PAGE NO SORT REQUESTED PRIMACY STATE: GA PRIMACY: Y PWS ID: GA0510022 EPA REGION: 04 SYSTEM NAME : DYCHES MOBILE ESTATES PHONE: (912) 355-6633 SYSTEM ADDRESS: DYCHES MOBILE ESTATES GRANT ELIGIBLE 280 EISENHOWER DRIVE STATUS CAC GA 31406 ANNAH PLANT TYPE С OWNER TYPE ADDRESSES: NONE PLANT SERVICE AREA: (* INDICATES PRIMARY SERVICE AREA) ID MAJOR CATEGORY SUBCATEGORIES 01 *MOBILE HOME PARK RESIDENTIAL VISITS: NONE INV UPDATE DATE : 03/17/93 ACTIVE INDICATOR: BEGIN DATE DEACTIVATION DATE: POPULATION SERVED: 215 NUMBER OF SERVICES: 81 SEASON START SEASON END 03/12/80 REGULATE BY INV INSERT DATE : LAST UPDATE DATE: 03/17/93 PRIMARY SOURCE SURFACE % GROUND % PUR SURFACE % : PUR GROUND % GEOGRAPHIC AREAS SERVED : ADMIN ADMIN CONG STATE FIPS INDIAN DIST COUNTY MSA RESV CD ΙD REGION DIST COUNTY CITY ----051 7520 01 01 051 SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION: DATA TREATMENTS -----CODE AVAIL ORG LONG SELLER ID ID OBJECTIVE PROCESS

O1 DISINFECTION

HYPOCHLORINATION, POST

LOCATE STATEMENT:
LOCATE (0) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

0315929 0810927

SRC 101 DRILLED WELL #1 G

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510022

VARIANCE OR EXEMPTION	LEGAL		ENFORCEMEN	TS
CONTAMINANT VAR/EXMP VAR/EXMP ID MODIFIED MCL TYPE ID	STATUS	DATE	10	RELATED VIOLS
	SIE SIE	05/24/91 03/13/91		9191002
	SIA SIE	12/15/89 12/15/89	89E0002	8904303 8904303

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510022

			VIOLA	TIONS	;						VIOLA	TIONS		
CONT	BEGIN		AWARE	SMP	ANALYTICAL	VIO	CONT		BEGIN		AWARE	SMP	ANALYTICAL	VIO
ID TY	DATE	DUR	DATE	TKN	RESULT	ID	ID	TY	DATE	DUR	DATE	TKN	RESULT	10
3100 23	04/01/91	001				9191002	3000	03	08/01/89			000		8904303
	11/01/79					8002001			12/01/79			000		8002002
3000 03	01/01/80	001				8002003	3000	03	05/01/80	001				8002004

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP.

PAGE 6

NO SORT REQUESTED EPA REGION: 04 PRIMACY STATE: GA PRIMACY: Y PWS ID: GA0510031 PHONE: SYSTEM NAME : HOLIDAY MOBILE PARK SYSTEM ADDRESS: HOLIDAY MOBILE HOME PARK GRANT ELIGIBLE 138 SALT CREEK ROAD LOT 1 STATUS : CAC ANNAH GA 31405 PLANT TYPE OWNER TYPE ADDRESSES: NONE PLANT SERVICE AREA: (* INDICATES PRIMARY SERVICE AREA) ID MAJOR CATEGORY SUBCATEGORIES ----01 RESIDENTIAL *MOBILE HOME PARK VISITS: NONE 03/17/93 ACTIVE INDICATOR > INV UPDATE DATE : BEGIN DATE DEACTIVATION DATE: POPULATION SERVED: 130 NUMBER OF SERVICES: 33 SEASON START SEASON END 03/12/80 REGULATE BY S INV INSERT DATE LAST UPDATE DATE: 03/17/93 PRIMARY SOURCE SURFACE % GROUND % PUR SURFACE % : PUR GROUND % GEOGRAPHIC AREAS SERVED : STATE FIPS INDIAN ADMIN ADMIN CONG COUNTY COUNTY MSA RESV CD ΙD REGION DIST DIST CITY -----01 051 051 01 SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION: DATA -- TREATMENTS ----

SELLER ID

ID OBJECTIVE

01 DISINFECTION

PROCESS

HYPOCHLORINATION, POST

LOCATE STATEMENT:

TYPE ID NAME

SRC 101 DRILLED WELL #1 G

LOCATE (O) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

CODE AVAIL ORG

LAT

LONG

0320258 0811116

03/26/93 FRDS35	um man a se e Paraseg		e al trans - aug ent d' - et te tr	F	ANN	UAL D IA #8	RTING DAT DATA EVAL 334MFOR I SORT RE	UATIO IMANY	N REPO				PAGE	73
EPA REGION:	: 04	PRIMACY	STATE: 0	GA PR	IMACY:	Y	PWS ID:	GA051	0035					
	TEM NAME Tem address		TRAILER I	PARK			P1 31405	HONE:	(912)	234-7682		GRANT ELIGIBLE STATUS PLANT TYPE OWNER TYPE	: : :	Y CAC C
ADDRESSES	S: NONE													
PLANT SE	RVICE AREA:		(* IND	ICATES F	PRIMARY	SERV	CE AREA)						
11		MAJOR CAT	FEGORY		su	BCATE	GORIES							
01		RESIDENT	IAL		*MOBILE	HOME	PARK							
VISITS:	NONE													
ACTIVE IN POPULATION REGULATE SURFACE 2	NDICATOR: ON SERVED: BY :	1′	A IN' 16 NUI S IN' GRO	V UPDATE MBER OF V INSER1 OUND %	DATE SERVICE DATE	s:	03/17/9: 5 03/12/8	3 8 1 S 0 L	.AST U	DATE : START : PDATE DATE: RFACE % ;	03/17/93	DEACTIVATION DATE: SEASON END PRIMARY SOURCE PUR GROUND %		G
GEOGRAPHIC A	AREAS SERVE	D :												
ID RE	EGION DI	ST DI	IST CO		FIPS COUNTY		 1sa	INDIA RESV		CITY				
01				051	051									
SOURCE (SRC) /ENTRY PO	INT (EPT)	/PLANT	(PLT) IN	NFORMATI	ON:			_					
TYPE ID NA	AME	CODE	AVAIL	DATA ORG L/	AT L	ONG	SELL	ER 1D	 ID	OBJECTIVE	1	REATMENTS		

O1 DISINFECTION O1 DISINFECTION

HYPOCHLORINATION, POST HYPOCHLORINATION, POST

LOCATE STATEMENT: LOCATE (O) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

S S

0320221 0811101 0320221 0811101

SRC 101 DRILLED WELL #1 G P SRC 102 DRILLED WELL #2 G P

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 74

EPA REGION: 04	A REGION:	04
----------------	-----------	----

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510035

	-VARIANCE	OR	EXEMPTION	
CONTAMINANT			VAR/EXMP	VAR/EXMP ID
10	MODIFIED	MCL	TYPE	ÌD

-----ENFORCEMENTS-----LEGAL

STATUS DATE ID RELATED VIOLS

SIA 09/30/86 86E0001 SIE 09/30/86 86E0002

8600055 8600055

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

75 PAGE

EPA REGION: 04

PRIMACY: Y PRIMACY STATE: GA

PWS 1D: GA0510035

VIOLATIONS						VIOLATIONS									
CONT		BEGIN		AWARE	SMP	ANALYTICAL	OIV	CONT		BEGIN		AWARE	SMP	ANALYTICAL	VIO
ID T	Υ	DATE	DUR	DATE	TKN	RESULT	ID	ID	ΤY	DATE	DUR	DATE	TKN	RESULT	ID
	-														
3000 C	10	00 /01 /RK	001			26 00000000	8400055								

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 86

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y PWS ID: GAO510042

SYSTEM NAME : PLANTATION INN MOBILE ESTATES

PHONE: (912) 897-3088

SYSTEM ADDRESS: PLANTATION INN MHP

129 WINCHESTER DR.

GRANT ELIGIBLE STATUS CAC PLANT TYPE

ANNAH

GA 31410

OWNER TYPE

C

ADDRESSES: NONE

PLANT SERVICE AREA:

(* INDICATES PRIMARY SERVICE AREA)

ΙD **---**

MAJOR CATEGORY ------ SUBCATEGORIES

01

RESIDENTIAL

*MOBILE HOME PARK

VISITS: NONE

SURFACE %

ACTIVE INDICATOR : POPULATION SERVED: REGULATE BY

200

INV UPDATE DATE : NUMBER OF SERVICES: INV INSERT DATE :

GROUND %

03/17/93 88 03/12/80 BEGIN DATE SEASON START

LAST UPDATE DATE: 03/17/93 PUR SURFACE % :

DEACTIVATION DATE: SEASON END

PUR GROUND %

PRIMARY SOURCE

GEOGRAPHIC AREAS SERVED :

ADMIN ADMIN REGION DIST ID

CONG STATE DIST COUNTY 01 051

FIPS COUNTY 051

INDIAN MSA RESV CD ----7520

CITY

SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION:

DATA TYPE ID NAME CODE AVAIL ORG LAT

LONG

SELLER ID

ID OBJECTIVE

----- TREATMENTS -----PROCESS

SRC 101 DRILLED WELL #1 G PLT 950 PLANTATION INN O

Ρ

0320228 0811118 S Н 0320248 0810054

01 DISINFECTION

HYPOCHLORINATION, POST

FEDERAL REPORTING DATA SYSTEM - FRDS-11 ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 87

EPA REGION: 04	PRIMACY STATE:	GA PRIMACY	': Y PWS	ID: GAC	0510042		
VARIANCE		VAR/EXMP		LEGAL		ENFORCEM	ENTS
ID MODIFIED		10		STATUS	DATE	10	RELATED VIOLS
				SIA	09/30/87		8701612
				SIE	09/30/87	86E0001	8701612 8600056
				SIE	09/30/86 09/30/85 09/30/85	85E0001	8600056 85V0001
				SIE SIF	09/30/85		85V0001 85V0001

FEDERAL REPORTING DATA SYSTEM - FRDS-11
ANNUAL DATA EVALUATION REPORT
FOIA #834MFOR DYNAMIC CORP.
NO SORT REQUESTED

PAGE 88

EPA REGION: 04 PRIMACY STATE: GA PRIMACY: Y PWS ID: GA0510042

VIOLATIONS							VIOLATIONS							
CONT ID TY	BEGIN DATE	DUR	AWARE DATE	SMP TKN	ANALYTICAL Result	VIO ID	CONT ID	TY	BEGIN Date	DUR	AWARE Date	SMP	ANALYTICAL Result	VIO ID
	09/01/87	001		000		8701612 85V0001	3000		09/01/86	001		000		8600056

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE

EPA REGION: 04

PRIMACY STATE: GA PRIMACY: Y PWS ID: GAO510049

SYSTEM NAME : SOUTHSIDE MOBILE ESTATES

PHONE: (912) 355-6633

SYSTEM ADDRESS: DYCHES CONSTRUCTION COMPANY

280 EISENHOWER DRIVE ANNAH

GA 31406

GRANT ELIGIBLE STATUS : CAC PLANT TYPE С OWNER TYPE

ADDRESSES: NONE

PLANT SERVICE AREA:

(* INDICATES PRIMARY SERVICE AREA)

ΙD ---- MAJOR CATEGORY

SUBCATEGORIES

01

RESIDENTIAL

*MOBILE HOME PARK

VISITS: NONE

ACTIVE INDICATOR, : POPULATION SERVED:

INV UPDATE DATE : 300 NUMBER OF SERVICES:

03/17/93 106 BEGIN DATE SEASON START :

DEACTIVATION DATE:

REGULATE BY SURFACE %

INV INSERT DATE : GROUND %

03/12/80

LAST UPDATE DATE: 03/17/93 PUR SURFACE % :

SEASON END PRIMARY SOURCE PUR GROUND %

GEOGRAPHIC AREAS SERVED :

ADMIN ΙD REGION

ADMIN DIST

CONG STATE DIST COUNTY 01 051

FIPS . COUNTY 051

INDIAN MSA RESV CD 7520

SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION:

TYPE ID NAME CODE AVAIL ORG LAT

:

DATA

S

SELLER ID LONG

ID OBJECTIVE

TREATMENTS ---PROCESS

SRC 101 DRILLED WELL #1 G

0315941 0810908

01 DISINFECTION

HYPOCHLORINATION, POST

LOCATE STATEMENT:

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 97

EPA	REGION:	04
-----	---------	----

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510049

CONTAMINANT	VARIANCE MODIFIED	 EXEMPTION VAR/EXMP TYPE	

		ENFOR	RCEMENTS	
LEGAL STATUS	BTA0	10	RELATE	VIOLS
SIE	05/24/91 03/13/91	9191002 9191001	919	1002

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 98

EPA REGION: 04 PRIMACY STATE: GA PRIMACY: Y PWS ID: GA0510049

V10LAT10NS														
CONT	BEGIN		AWARE	SMP	ANALYTICAL	VIO	CONT		BEGIN		AWARE	SMP	ANALYTICAL	VIO
ID TY	DATE	DUR	DATE	TKN	RESULT	ID	10	ΤY	DATE	DUR	DATE	TKN	RESULT	ID
3100 23	04/01/91	001				9191002	3000	03	07/01/81	001				8102107
	11/01/79					8002256			12/01/79					8002257
	01/01/80					8002258			05/01/80					8002259
2000 03	01/01/00	001				COOLLIG	2000	0,5	03/01/00	001				0002277

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 102

EPA REGION: 04

PRIMACY STATE: GA PRIMACY: Y PWS ID: GA0510051

PHONE: (912) 964-7675

SYSTEM NAME : SUBURBANITE VILLAGE

SYSTEM ADDRESS: P & H ENTERPRISES

1518 DEAN FOREST ROAD ANNAH

GRANT ELIGIBLE Y STATUS CAC PLANT TYPE OWNER TYPE

ADDRESSES: NONE

PLANT SERVICE AREA:

(* INDICATES PRIMARY SERVICE AREA)

ΙD

MAJOR CATEGORY

SUBCATEGORIES

GA 31405

01

RESIDENTIAL

*MOBILE HOME PARK

VISITS: NONE

REGULATE BY

SURFACE %

01

ACTIVE INDICATOR : POPULATION SERVED:

INV UPDATE DATE : NUMBER OF SERVICES: 486 INV INSERT DATE :

GROUND %

03/17/93 187 03/12/80 BEGIN DATE SEASON START LAST UPDATE DATE: 03/17/93

PUR SURFACE % :

DEACTIVATION DATE: SEASON END

PRIMARY SOURCE PUR GROUND %

GEOGRAPHIC AREAS SERVED :

ADMIN ADMIN ΙD REGION DIST

CONG DIST

STATE FIPS COUNTY COUNTY ____ 051 051

INDIAN MSA RESV CD

CITY

SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION:

TYPE	10	NAME	CODE	AVAIL	DATA ORG	LAT	LONG	SELLER ID	1D	OBJECTIVE	TREATMENTS
SRC SRC SRC	102	DRILLED WELL #1 DRILLED WELL #2 DRILLED WELL #3	G	P P P	s s s	0315247	0811117 0810609 0810609		01 01 01	DISINFECTION DISINFECTION DISINFECTION	HYPOCHLORINATION, POST HYPOCHLORINATION, POST HYPOCHLORINATION, POST

LOCATE STATEMENT:

LOCATE (0) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 103

EPA REGION: 04	PRIMACY	STATE:	GA	PRIMACY:	: Y	PWS	ID: GAG	0510051			
CONTAMINANT ID MODIFIED	٧	ION AR/EXMP TYPE					LEGAL STATUS		ID	RCEMENTS RELATED VIOL	
	·							09/30/87 09/30/87		8701193 8701193	

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 104

EPA REGION: 04 PRIMACY STATE: GA PRIMACY: Y PWS ID: GAOS10051

VIOLATIONS								VIOLATIONS							
CONT		BEGIN		AWARE	SMP	ANALYTICAL	VIO	CONT		BEGIN		AWARE	SMP	ANALYTICAL	OIV
ID T	Y	DATE	DUR	DATE	TKN	RESULT	ID	ID	ΤY	DATE	DUR	DATE	TKN	RESULT	ID
	-														
3000 0	13	05/01/87	001		000		8701193								

FEDERAL REPORTING DATA SYSTEM - FRDS-II 03/26/93 ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. FRDS35 PAGE 109 NO SORT REQUESTED PRIMACY: Y EPA REGION: 04 PWS ID: GA0510055 PRIMACY STATE: GA SYSTEM NAME : VICKS MOBILE HOME PARK PHONE: (912) 352-3376 SYSTEM ADDRESS: VICK'S MOBILE HOME PARK GRANT ELIGIBLE 10509 MIDDLEGROUND ROAD STATUS : CAC GA 31406 ANNAH PLANT TYPE С OWNER TYPE 2 ADDRESSES: NONE PLANT SERVICE AREA: (* INDICATES PRIMARY SERVICE AREA) SUBCATEGORIES 10 MAJOR CATEGORY ----01 RESIDENTIAL *MOBILE HOME PARK VISITS: NONE ACTIVE INDICATOR: : INV UPDATE DATE : 03/17/93 BEGIN DATE DEACTIVATION DATE: POPULATION SERVED: NUMBER OF SERVICES: 70 SEASON START SEASON END INV INSERT DATE : 03/12/80 LAST UPDATE DATE: 03/17/93 REGULATE BY PRIMARY SOURCE GROUND % PUR SURFACE % : PUR GROUND % SURFACE % GEOGRAPHIC AREAS SERVED : CONG ADMIN ADMIN STATE INDIAN

SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION:

DIST

DIST

01

COUNTY

051

COUNTY

051

TYPE ID NAME CODE AVAIL ORG LAT LONG SELLER ID ID OBJECTIVE PROCESS

RESV CD

MSA

7520

SRC 101 DRILLED WELL #1 G P S 0315936 0810914

01 DISINFECTION

CITY

HYPOCHLORINATION, POST

LOCATE STATEMENT:

ID

01

REGION

LOCATE (O) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

.

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 110

EPA REGION: 04	PRIMACY STATE	: GA PF	RIMACY: Y	PWS ID: GAG)510055		
VARIANCE		P VAR/EXM		LEGAL		ENFORCEME	NTS
ID MODIFIED		ID	-	STATUS	DATE	ID	RELATED VIOLS
				SIE SIA	11/16/89 09/30/84	9089001 84E0001	9089001 84V0001

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 111

EPA REGION: 04 PRIMACY STATE: GA PRIMACY: Y PWS ID: GA0510055

VIOLATIONS						VIOLATIONS									
CONT		BEGIN		AWARE	SMP	ANALYTICAL	017	CONT		BEGIN		AWARE	SMP	ANALYTICAL	VIO
ID	ΤY	DATE	DUR	DATE	TKN	RESULT	ID	10	ΤY	DATE	DUR	DATE	TKN	RESULT	ID
3000	03	10/01/89	001	11/16/89	000		9089001	3000	02	06/30/84	001			2.00000000	8470001

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 156

The state of the second of the second
EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510089

SYSTEM NAME : NASSAU WOODS

SYSTEM ADDRESS: NASSAU WOODS MHP

6605 ABERCORN STREET

PHONE: (912) 354-2313

ANNAH

GRANT ELIGIBLE STATUS

CAC

GA 31405

PLANT TYPE OWNER TYPE

ADDRESSES: NONE

PLANT SERVICE AREA:

(* INDICATES PRIMARY SERVICE AREA)

ID

MAJOR CATEGORY

SUBCATEGORIES

01

RESIDENTIAL

*MOBILE HOME PARK

VISITS: NONE

ACTIVE INDICATOR : POPULATION SERVED:

GEOGRAPHIC AREAS SERVED :

INV UPDATE DATE : 585 NUMBER OF SERVICES: INV INSERT DATE : S GROUND %

03/17/93 225 03/12/80 BEGIN DATE SEASON START LAST UPDATE DATE: 03/17/93 PUR SURFACE % :

DEACTIVATION DATE: SEASON END PRIMARY SOURCE

PUR GROUND %

---- TREATMENTS -----

PROCESS

G

REGULATE BY SURFACE %

SRC 101 DRILLED WELL #1 G

INDIAN ADMIN STATE FIPS ADMIN CONG REGION

051

ΙD ----01

DIST

DIST

COUNTY COUNTY

MSA RESV CD

CITY ------

SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION:

DATA TYPE ID NAME CODE AVAIL ORG

LAT LONG SELLER ID

0320441 0811116

ID OBJECTIVE

01 DISINFECTION

HYPOCHLORINATION, POST

LOCATE (0) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 159

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510092

SYSTEM NAME : DERENNE PLAZA CONDO

PHONE: (912) 234-7205

SYSTEM ADDRESS: THE DERENNE PLAZA OWNERS ASSO

24 EAST LIBERTY STREET, APT#83

STATUS PLANT TYPE

GRANT ELIGIBLE

CAC С

HANNA

GA 31401

OWNER TYPE

ADDRESSES: NONE

PLANT SERVICE AREA:

(* INDICATES PRIMARY SERVICE AREA)

ΙD ----

MAJOR CATEGORY ______ SUBCATEGORIES

01

*RESIDENTIAL

VISITS: NONE

ACTIVE INDICATOR .:

INV UPDATE DATE :

03/17/93

.-----

BEGIN DATE

DEACTIVATION DATE:

POPULATION SERVED: REGULATE BY

NUMBER OF SERVICES: 86 INV INSERT DATE : S GROUND %

55 03/12/80 SEASON START LAST UPDATE DATE: 03/17/93 PUR SURFACE % :

SEASON END PRIMARY SOURCE PUR GROUND %

G

SURFACE % GEOGRAPHIC AREAS SERVED :

> INDIAN ADMIN

ΙD REGION _---

01

ADMIN DIST ____

STATE CONG DIST COUNTY ____ -----

FIPS COUNTY -----051

MSA RESV CD ----------7520

CITY -----

SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION:

01

TYPE ID NAME

DATA CODE AVAIL ORG LAT

S

051

LONG

SELLER ID

ID OBJECTIVE

-- TREATMENTS -----PROCESS

SRC 101 DRILLED WELL #1 G

0320405 0810611

01 DISINFECTION

HYPOCHLORINATION, POST

LOCATE STATEMENT:

"FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP.

NO SORT REQUESTED

PAGE 160

EPA REGION: 04	PRIMACY	STATE: GA	PRIMACY: Y	r PWS	ID: GAG	0510092		
VARIANCE		ION AR/EXMP VAR			LEGAL		ENFORCEME	ENTS
ID MODIFIED		TYPE	10		STATUS	DATE	ID	RELATED VIOLS
					SIA	09/30/86		86v0001
						09/30/86		86V0001
					SIA Sie	09/30/85 09/30/85		85V0001 85V0001

FEDERAL REPORTING DATA SYSTEM — FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PRIMACY STATE: GA PRIMACY: Y PWS ID: GA0510092 EPA REGION: 04

			VIOLAT	IONS			VIOLATIONS							
CONT	BEGIN		AWARE	SMP	ANALYTICAL	VIO	CONT	_	BEGIN		AWARE	SMP	ANALYTICAL	VIO
ID TY	DATE	DUR	DATE	TKN	RESULT	ID	ID	TY	DATE	DUR	DATE	TKN	RESULT	ID
	11/01/85 10/01/80 01/01/80	001		000		86V0001 8101491 8001637	3000	03	12/01/84 12/01/79 07/01/80	001		000		85 V 0 0 0 1 80 0 1 6 3 6 80 0 1 6 3 8

03/26/93 FRDS35

LOCATE STATEMENT: LOCATE (O) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

PAGE 161

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 178

1 110000						NO SORT RE		VI •			PAGE	110
EPA RE	GION: 04	PRI	MACY STATE	: GA	PRIMACY: Y	PWS ID:	GA0510103					
		RESS: LA	KESIDE MOBI KESIDE MOBI 04 OGEECHÉE NAH	LE HOME		31405	ione: (912	234-9077		GRANT ELIGIBLE STATUS PLANT TYPE OWNER TYPE		CAC C 2
ADDR	ESSES: NON	E										
PLAN	T SERVICE A	REA:	(*]	NDICATES	PRIMARY SER	VICE AREA))					
	ID	MAJ	OR CATEGORY		SUBCA	TEGORIES						
	01	RES	IDENTIAL		*MOBILE HO							
VISI	TS: NONE											
POPU REGU	VE INDICATO LATION SERV LATE BY ACE %	ED:	133 S	NUMBER (ATE DATE : DF SERVICES: ERT DATE :	03/17/93 38 03/12/80) LAST	DATE : N START : UPDATE DATE: URFACE % :	03/17/93	DEACTIVATION DAT SEASON END PRIMARY SOURCE PUR GROUND %	•	G
GEOGRAP	HIC AREAS S	ERVED :										
ID	ADMIN REGION	DIST	DIST	COUNTY	FIPS COUNTY		INDIAN RESV CD	CITY				
01			01	051	051							
SOURCE	(SRC) /ENTR	Y POINT	(EPT) /PLAN	IT (PLT)	INFORMATION:					:		
TYPE 1	D NAME		CODE AVAII	DATA ORG			-	D OBJECTIVE		REATMENTS PROCESS		

01 DISINFECTION

HYPOCHLORINATION, POST

LOCATE STATEMENT: LOCATE (O) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

0320222 0810908

03/26/93 FRD\$35

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 179

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510103

LEGAL

	-VARIANCE	OR	EXEMPTION	
CONTAMINANT			VAR/EXMP VAR/EXMP	
ID	MODIFIED	MCL	. TYPE ID	

-----ENFORCEMENTS-----

STATUS DATE ID

RELATED VIOLS

SIA 09/30/85 85E0001 SIE 09/30/85 85E0002

85V0001 85V0001

03/26/93 FR0\$35

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 180

EPA REGION: 04 PRIMACY STATE: GA PRIMACY: Y PWS ID: GA0510103

				VIOLA	TIONS	}		VIOLATIONS								
CONT 1D	ΤY	BEGIN Date	DUR	AWARE Date	SMP TKN	ANALYTICAL Result	VIO ID	CONT	ΤY	BEGIN Date	DUR	AWARE Date	SMP TKN	ANALYTICAL Result	VIO ID	
		10/01/84			000		85V0001			11/01/79	001				8001284	
		02/01/80					8001285 8001287	3000	03	04/01/80	001				8001286	

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 187

EPA REGION: 04

PRIMACY STATE: GA PRIMACY: Y

PWS ID: GA0510107

SYSTEM NAME : USA-HUNTER AF MAIN

SYSTEM ADDRESS: HQ 24TH INF DIV M & FT STEWART

PHONE: (912) 767-8356

ATTN+1: AF7P-

ATTN+|: AFZP-DEV T STEWART

STATUS PLANT TYPE OWNER TYPE

GRANT ELIGIBLE

: CAC : C

ADDRESSES: NONE

PLANT SERVICE AREA:

(* INDICATES PRIMARY SERVICE AREA)

ID

MAJOR CATEGORY

SUBCATEGORIES

GA 31314

01

*RESIDENTIAL

VISITS: NONE

ACTIVE INDICATOR : POPULATION SERVED:

A INV UPDATE DATE : 6,021 NUMBER OF SERVICES:

03/17/93 694

BEGIN DATE Season Start DEACTIVATION DATE: SEASON END :

REGULATE BY SURFACE %

S INV INSERT DATE : GROUND % : 03/12/80

LAST UPDATE DATE: 03/17/93 PUR SURFACE % : SEASON END PRIMARY SOURCE PUR GROUND %

G

GEOGRAPHIC AREAS SERVED :

	ADMIN	ADMIN	CONG	STATE	FIPS		INDIAN	
ID	REGION	DIST	DIST	COUNTY	COUNTY	MSA	RESV CD	CITY

01 01 051 051

SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION:

TYPE	ID	NAME	CODE	AVAIL	DATA ORG	LAT	LONG	SELLER ID	ID	OBJECTIVE	TREATMENTS
SRC SRC PLT	101 102 950	DRILLED WELL #1 DRILLED WELL #2 USA-HUNTER AF M	G	P P	S S H	0320139	0810747 0810806 0813336		01 01	DISINFECTION DISINFECTION	GASEOUS CHLORINATION, POST GASEOUS CHLORINATION, POST

LOCATE STATEMENT:

LOCATE (0) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 188

EPA REGION: 04	PRIMACY STATE: G.	A PRIMACY: Y	PWS ID: GA(0510107		
CONTAMINANT ID MODIFIED	OR EXEMPTION VAR/EXMP V	AR/EXMP	LEGAL STATUS	DATE	ENFORCEM	ENTS RELATED VIOLS
			SIE SIA	11/16/89 09/30/88		9089003 8802722
			SIE	09/30/88	88E0002	8802723 8802722 8802723
		,	SIA SIA SIE	09/30/86 09/30/85 09/30/85	85E0001	86V0001 85V0001 85V0001

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FO1A #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 189

EPA REGION: 04 PRIMACY STATE: GA PRIMACY: Y PWS ID: GA0510107

				VIOLAT	TIONS			VIOLATIONS								
CONT ID	BEG TY DA		DUR	AWARE DATE	SMP TKN	ANALYTICAL Result	VIO ID	CONT ID	TY	BEGIN Date	DUR	AWARE DATE	SMP TKN	ANALYTICAL RESULT	VIO ID	
3000 (3000 (3000 (03 10/0 03 05/0 03 09/0 03 07/0 03 09/0	1/88 1/85 1/80	001 001 001	11/16/89	000		9089003 8802723 85V0001 8002179 8002181	3000 3000	03 03	04/01/88 10/01/85 12/01/80 08/01/80	001		000		8802722 86V0001 8102015 8002180	

03/26/93

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT

FRDS35					FOR DYNAM: ORT REQUES	IC CORP.				PAGE	196
EPA REGI	ON: 04	PRIMACY STA	TE: GA PRIM	ACY: Y PWS	S ID: GA05	10111					
		: LIVE OAK MOI S: LIVE OAK MOI 3001 LITTLE ANNAH	BILE HOME PARK	GA 3141		(912) 9	927-6110		GRANT ELIGIBLE STATUS PLANT TYPE OWNER TYPE	:	Y CAC C 2
ADDRES	SES: NONE										
PLANT	SERVICE AREA	: (*	INDICATES PRI	MARY SERVICE	AREA)						
	ID	MAJOR CATEGO	RY	SUBCATEGO	RIES						
	01	RESIDENTIAL	*M(BILE HOME PA	ARK						
VISITS	: NONE										
		A 35 S	INV UPDATE DANUMBER OF SEINV INSERT DAGGEOUND %	ATE : 03, RVICES: ATE : 02,	/17/93 21 /03/81	BEGIN D. Season Last up Pur sur	ATE : START : DATE DATE: C FACE % :	03/17/93	DEACTIVATION DA SEASON END PRIMARY SOURCE PUR GROUND %	TE:	G
GEOGRAPHI	C AREAS SERV	ED:									
1D		DMIN CONG IST DIST	COUNTY CO	PS Unty MSA			CITY				
01				51 752							
SOURCE (S	RC) /ENTRY P	OINT (EPT) /PL	ANT (PLT) INFO	RMATION:		_					
TYPE ID	NAME	CODE AVA	DATA IL ORG LAT	LONG	SELLER ID	10	OBJECTIVE		REATMENTS PROCESS		
SRC 101 PLT 950	DRILLED WEL	L# G P	s 0320 H 0320	458 0811141 248 0810054		01	DISINFECTION	N	HYPOCHLORINATION,	POST.	

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 197

EPA REGION: 04	PRIMACY STATE:	GA PRIMACY:	Y PWS	ID: GA	0510111		
	R EXEMPTION					ENFORCEME	NTS
CONTAMINANT ID MODIFIED M	VAR/EXMP CL TYPE	ID		STATUS	DATE	ID	RELATED VIOLS
				SFO	03/12/91	9191009	9191003 9190001 9090001
				SFJ	02/15/91	9191006	,0,0001
				SIF	05/08/91	9191007	9191003 9190001 9090001
				SIE	11/27/90	9190001	9190001
				SIF	11/27/90 12/03/90	9190002	9190001
				SIE	01/23/91	9191003	
				SIF	02/01/91	9191004	
•				SFJ	02/11/91	9191005	9190001 9090001
				SIE	09/14/90	9090001	9090001
				SIA	12/15/89	89E0004	8904030
				SIE	12/15/89	89E0003	8904030
				SIA	09/30/89		8904030
				SIE	09/30/89		8904030
				SIA	09/30/84	84E0001	8470001

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 198

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510111

			VIOLATIONS											
CONT ID T	BEGIN Y DATE	DUR	AWARE DATE	SMP TKN	ANALYTICAL RESULT	V10 1D	CONT ID	TY	BEGIN Date	DUR	AWARE DATE	SMP TKN	ANALYTICAL RESULT	V10 10
3000 0 3000 0 3000 0 3000 0	3 03/01/91 3 08/01/90 2 04/30/84 3 12/01/80 3 01/01/80 3 09/01/80	001 001 001 001	09/14/90	000	6.0000000	9191003 9090001 84V0001 8102152 8002297 8002299	3000 3000 3000	03 03 03	10/01/90 06/01/89 11/01/80 02/01/81 04/01/80	001 001 001	11/10/90	000		9190001 8904030 8102151 8102153 8002298

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 217

						NO S	ORT, REQ	UESTED						
EPA REGI	ION: 04	PRI	MACY ST	ATE: GA	PRIMACY:	Y PW	S ID: G	A051012	23					-
	SYSTEM NAM System add	RESS: DE P.			·	GA 314		ONE:				GRANT ELIGIBLE STATUS PLANT TYPE OWNER TYPE	:	Y CAC C
ADDRES	SSES: NON	IE												
PLANT	SERVICE A	REA:	(* INDICATE	S PRIMARY	SERVICE	AREA)							
	ID	MAJ	OR CATEG	ORY	<u> </u>	UBCATEGO	RIES							
	01	*RES	IDENTIAL											
VISITS	S: NONE								-					
			190 S	INV UPD NUMBER INV INS GROUND	ATE DATE OF SERVIO ERT DATE %	: 03 :ES: 06	3/17/93 56 5/17/87	BEGI SEAS LAST PUR	IN D SON T UP SUR	ATE : START : DATE DATE: FACE % :	03/17/93	DEACTIVATION DATE: SEASON END PRIMARY SOURCE : PUR GROUND % :		G
GEOGRAPHI	IC AREAS S													
ID	ADMIN REGION	ADMIN	CONG	STATE COUNTY		MSA	A F	INDIAN RESV CD		CITY				
01				051					_					
SOURCE (S	SRC) /ENTR	RY POINT	(EPT) /P	LANT (PLT)	INFORMAT	TION:								
TYPE ID	NAME		CODE AV	DATA AIL ORG	LAT	LONG	SELLEF	RID	ID	OBJECTIVE	1	TREATMENTS		
SRC 101 PLT 950	DRILLED DERRICK	WELL #1 SUBDIVI	G O	P S	0320204 0320459	0811251 0810600			01	DISINFECTIO	М	HYPOCHLORINATION, POS	т	

LOCATE STATEMENT: LOCATE (O) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

FEDERAL REPORTING DATA SYSTEM - FRDS-11 ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 218

EPA REGION: 04	PRIMACY STATE: G	SA PRIMACY: Y	PWS 1	ID: GAC	510123		
CONTAMINANT ID MODIFIES	OR EXEMPTION VAR/EXMP V O HCL TYPE			EGAL STATUS	DATE	ENFORCEME	RELATED VIOLS
				SIA	09/30/87	87E0001	8700841 8701199
				SIE	09/30/87	87E0002	8700841 8701199

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 219

PWS. ID: GA0510123 EPA REGION: 04 PRIMACY STATE: GA PRIMACY: Y

VIOLATIONS						VIOLATIONS									
CONT		BEGIN		AWARE	SMP	ANALYTICAL	017	CONT		BEGIN		AWARE	SMP	ANALYTICAL	VIO
ID	ΤY	DATE	DUR	DATE	TKN	RESULT	ID	. 10	ΤY	DATE	DUR	DATE	TKN	RESULT	ID
3000	03	02/01/87	001		000		8700841	3000	03	06/01/87	001		000		8701199

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 241

EPA REGION: 04

PRIMACY STATE: GA PRIMACY: Y PWS ID: GA0510138

SYSTEM NAME : BASHLORS MOBILE HOME PARK

PHONE: (912) 598-0808

SYSTEM ADDRESS: BASHLORS MOBILE HOME PARK

4 VANDY COURT HAMMA

GA 31411

GRANT ELIGIBLE STATUS CAC PLANT TYPE С OWNER TYPE

ADDRESSES: NONE

PLANT SERVICE AREA:

(* INDICATES PRIMARY SERVICE AREA)

----01

MAJOR CATEGORY

SUBCATEGORIES

RESIDENTIAL

*MOBILE HOME PARK

VISITS: NONE

SURFACE %

01

ACTIVE INDICATOR : POPULATION SERVED: REGULATE BY :

INV UPDATE DATE : NUMBER OF SERVICES: INV INSERT DATE :

GROUND %

03/17/93 24 03/12/80 BEGIN DATE SEASON START

LAST UPDATE DATE: 03/17/93 PUR SURFACE % :

DEACTIVATION DATE: SEASON END PRIMARY SOURCE :

PUR GROUND %

GEOGRAPHIC AREAS SERVED :

ADMIN ADMIN ID REGION

CONG DIST DIST

STATE COUNTY 051 01

FIPS COUNTY 051

INDIAN RESV CD

SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION:

TYPE ID NAME

CODE AVAIL ORG LAT

DATA

LONG

MSA ----

7520

SELLER ID

ID OBJECTIVE

-- TREATMENTS --PROCESS

SRC 101 DRILLED WELL #1 G PLT 950 BASHLORS MOBILE O

S 0320505 0811152 0320000 0810048 01 NO TREATMENT AT SO NO TREATMENT / NOT APPLICABLE

LOCATE STATEMENT:

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP.

PAGE 242

The state of the s

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510138

	-VARIANCE	OR	EXEMPTION						
CONTAMINANT			VAR/EXMP TYPE	VAR/EXMP					
10	MODIFIED	MCL	. TYPE	ÌD					

LEGAL		ENFOR	CEMENTS
STATUS	DATE	ID	RELATED VIOLS
SIA	12/15/89	89E0002	8904305
SIE	12/15/89	89E0001	8904305
SIA	09/30/88	88E0001	8802097
SIE	09/30/88	88E0002	8802097

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 243

EPA REGION: 04 PRIMACY STATE: GA PRIMACY: Y PWS ID: GA0510138

VIOLATIONS							VIOLATIONS								
CONT		BEGIN		AWARE	SMP	ANALYTICAL	VIO	CONT		BEGIN		AWARE	SMP	ANALYTICAL	VIO
ID	ΤY	DATE	DUR	DATE	TKN	RESULT	ID	10	ΤY	DATE	DUR	DATE	TKN	RESULT	ID
3000	03	07/01/89	001		000		8904305	3000	03	11/01/87	001		000		8802097

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 244

THE PART OF THE LABOUR THE

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y PWS ID: GA0510139

SYSTEM NAME : HEATHCOTE FARMS SUBDIVISION

PHONE: (404) 728-9971

SYSTEM ADDRESS: CHATHAM W/CO./HEATHCOTE

2719 BUFORD HIGHWAY

GRANT ELIGIBLE Υ STATUS : CAC PLANT TYPE С OWNER TYPE

ADDRESSES: NONE

PLANT SERVICE AREA:

(* INDICATES PRIMARY SERVICE AREA)

FIPS

051

COUNTY

10 ---- MAJOR CATEGORY

SUBCATEGORIES

GA 30324

01

*RESIDENTIAL

VISITS: NONE

ACTIVE INDICATOR : POPULATION SERVED: INV UPDATE DATE : NUMBER OF SERVICES: 03/17/93 25

BEGIN DATE SEASON START DEACTIVATION DATE:

REGULATE BY SURFACE %

INV INSERT DATE : GROUND %

03/12/80

LAST UPDATE DATE: 03/17/93 PUR SURFACE % :

SEASON END PRIMARY SOURCE PUR GROUND %

GEOGRAPHIC AREAS SERVED :

ADMIN ID REGION

ADMIN DIST

CONG STATE DIST 01 051

COUNTY

MSA

INDIAN RESV CD

CITY

SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION:

TYPE ID NAME

01

Р

DATA CODE AVAIL ORG LAT

LONG

SELLER ID

ID OBJECTIVE

-- TREATMENTS -PROCESS

SRC 101 DRILLED WELL #1 G

0320236 0811020

01 NO TREATMENT AT SO NO TREATMENT / NOT APPLICABLE

LOCATE STATEMENT:

LOCATE (0) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

FEDERAL REPORTING DATA SYSTEM - FRDS-II 🗝 03/26/93 ANNUAL DATA EVALUATION REPORT FRDS35 FOIA #834MFOR DYNAMIC CORP. PAGE 351 NO SORT REQUESTED EPA REGION: 04 PRIMACY STATE: GA PRIMACY: Y PWS ID: GA0510223 SYSTEM NAME : J. R. ROGERS MOBILE HOME CT. PHONE: (912) 897-5306 SYSTEM ADDRESS: ROGERS MOBILE HOME COURT GRANT ELIGIBLE POB 3922 STATUS CAC ANNAH GA 31404 PLANT TYPE C OWNER TYPE ADDRESSES: NONE (* INDICATES PRIMARY SERVICE AREA) PLANT SERVICE AREA: ΙD **MAJOR CATEGORY** SUBCATEGORIES 01 RESIDENTIAL *MOBILE HOME PARK VISITS: NONE 03/17/93 26 ACTIVE INDICATOR : INV UPDATE DATE : BEGIN DATE DEACTIVATION DATE: POPULATION SERVED: 65 NUMBER OF SERVICES: SEASON START SEASON END REGULATE BY S INV INSERT DATE : 03/12/80 LAST UPDATE DATE: 03/17/93 PRIMARY SOURCE G SURFACE % GROUND % PUR SURFACE % : PUR GROUND % GEOGRAPHIC AREAS SERVED : INDIAN ADMIN ADMIN CONG STATE FIPS DIST COUNTY COUNTY RESV CD CITY ID REGION DIST MSA ____ 01 051 051 7520 01 SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION: DATA TREATMENTS ---CODE AVAIL ORG TYPE ID NAME LAT LONG SELLER ID ID OBJECTIVE PROCESS SRC 101 DRILLED WELL #1 0320241 0811142 01 NO TREATMENT AT SO NO TREATMENT / NOT APPLICABLE 0320159 0810300 PLT 950 J. R. ROGERS MO

FEDERAL REPORTING DATA SYSTEM FFRDS-II

ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 352

EPA REGION: 04

ID

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510223

-----VARIANCE OR EXEMPTION-----CONTAMINANT MODIFIED MCL

VAR/EXMP VAR/EXMP

-----ENFORCEMENTS-----

LEGAL STATUS DATE

RELATED VIOLS

09/30/87 87E0001 09/30/87 87E0002

8701631 8701631

THE PROPERTY OF THE PROPERTY O 03/26/93 FRDS35

ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP.

NO SORT REQUESTED

PAGE 353

EPA REGION: 04 PRIMACY: Y PWS ID: GA0510223 PRIMACY STATE: GA

----VIOLATIONS--------VIOLATIONS-VIO BEGIN AWARE SMP ANALYTICAL VIO BEGIN ANALYTICAL AWARE SMP ID RESULT DUR DATE TKN RESULT ID TY DATE DATE TKN ID TY DATE ID

3000 02 08/01/87 001 3.00000000 8701631

FEDERAL REPORTING DATA SYSTEM - FRDS-II 03/26/93 ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. FRDS35 PAGE 373 NO SORT REQUESTED EPA REGION: 04 PRIMACY STATE: GA PRIMACY: Y PWS ID: GA0510235 SYSTEM NAME : DEAN FOREST ROAD TRAILER PARK PHONE: (912) 236-9103 SYSTEM ADDRESS: DEAN FOREST TRAILER PARK GRANT ELIGIBLE 1306 DEAN FOREST ROAD STATUS CAC HANNA GA 31405 PLANT TYPE OWNER TYPE ADDRESSES: NONE PLANT SERVICE AREA: (* INDICATES PRIMARY SERVICE AREA) ID MAJOR CATEGORY SUBCATEGORIES ---------01 RESIDENTIAL *MOBILE HOME PARK VISITS: NONE INV UPDATE DATE : 03/17/93 ACTIVE INDICATOR : BEGIN DATE DEACTIVATION DATE: POPULATION SERVED: NUMBER OF SERVICES: 65 SEASON START SEASON END 03/12/80 INV INSERT DATE : REGULATE BY S LAST UPDATE DATE: 03/17/93 PRIMARY SOURCE : PUR SURFACE % : SURFACE % GROUND % PUR GROUND % GEOGRAPHIC AREAS SERVED : ADMIN ADMIN CONG STATE FIPS INDIAN ID REGION DIST DIST COUNTY COUNTY RESV CD ------------------01 051 051 SOURCE (SRC) /ENTRY POINT (EPT) /PLANT (PLT) INFORMATION: DATA ---- TREATMENTS ---------CODE AVAIL ORG LAT SELLER ID PROCESS 0320308 0811236

O1 NO TREATMENT AT SO NO TREATMENT / NOT APPLICABLE

10.50

LOCATE STATEMENT: LOCATE (O) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

0320459 0810600

SRC 101 DRILLED WELL #1 G

PLT 950 DEAN FOREST ROA O

03/26/93 FRDS35

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 374

EPA REGION: 04	PRIMACY STATE:	GA PRIMACY: Y PWS	ID: GA0510235	
VARIANCE	OR EXEMPTION VAR/EXMP		ENFORCEMENTS	
ID MODIFIED			STATUS DATE ID	RELATED VIOLS
			SIE 05/24/91 9191003 SIF 11/20/90 9190002	9191002
			SIE 01/17/90 9090001	9089001

LOCATE STATEMENT: LOCATE (O) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

03/26/93 FRD\$35

FEDERAL REPORTING DATA SYSTEM - FRDS-II ANNUAL DATA EVALUATION REPORT FOIA #834MFOR DYNAMIC CORP. NO SORT REQUESTED

PAGE 375

EPA REGION: 04

PRIMACY STATE: GA

PRIMACY: Y

PWS ID: GA0510235

VIOLATIONS						VIOLATIONS									
CONT		BEGIN		AWARE	SMP	ANALYTICAL	OIV	CONT		BEGIN		AWARE	SMP	ANALYTICAL	OIV
ID	ΤY	DATE	DUR	DATE	TKN	RESULT	ID	ID	ŦΥ	DATE	DUR	DATE	TKN	RESULT	ID
		04/01/91 11/01/79					9191002 8002904			12/01/89 12/01/79			000		9089001 8002905

LOCATE STATEMENT: LOCATE (O) C100 WH C3 EQ GA AND C509 EQ 051 AND NK C107 EQ A AND NK C109 EQ C:

- 5. 223/18.770 C M-1-12

Reference No. 7

1990 CPH-1-12

1990 Census of Population and Housing Summary Population and Housing Characteristics

Georgia

Issued August 1991

U.S. Department of Commerce Robert A. Mosbacher, Secretary Rockwell A. Schnabel, Deputy Secretary

Economics and Statistics Administration Michael R. Darby, Under Secretary for Economic Affairs and Administrator

BUREAU OF THE CENSUS Barbara Everitt Bryant, Director

Table 6. Household, Family, and Group Quarters Characteristics: 1990

Lifer definitions of terms and meanings of symbols, see text)

For definitions of terms and meanings or sym			Fa	mily household	•	T	Nonfamily	households		Persons	per —	Person	us in group q	uarters
State County	,						Hous	eholder living	alone					
Place and [In Selected States] County Subdivision	Persons in	All house-		Married- couple	female house- holder, no husband			65 years			l		Institu-	Other per- sons in group
The State	households 6 304 583	holds 2 366 615	1 713 072	1 306 756	329 641	1otal 653 543	537 702	165 027	Female 149 417	Household 2.66	family 3.16	Total 173 633	persons 87 266	quarters 46 367
COUNTY Appling County	15 580	5 834	4 275	3 423	687	1 559	1 433	689	535	2.67	3.21	164	164	-
Atkinson County	6 209 9 436 3 610	2 210 3 442 1 300	2 645 949	1 299 2 000 666	268 539 220	563 797 351	517 742 326	282 376 174	229 301 148	2.81 2.74 2.78	3.33 3.17 3.33	130	121 5	9
Baldwin County	32 270 10 292 29 489	12 165 3 775	8 735 2 973	6 095 2 563 6 828	2 183 283 1 149	3 430 802 2 315	2 770 724 2 016	1 007 353 941	815 261 765	2.65 2.73 2.76	3,14 3 13 3,15	7 260 16 232	6 515 16 209	745
Barrow County	55 485 15 923	10 676 20 091 5 972	8 361 15 665 4 343	12 828 3 153	2 149 1 007	4 426 1 629	3 861 1 505	1 605 766	1 326 620	2.76 2.67	3.17 3.22	426 322	336 252	23 90 70
Birtien County	13 859 145 108	5 149 56 307	3 950 39 301	3 208 26 742	569 10 753	1 199	1 105	530 5 916	427 4 812	2.69 2.58	3.13 3.14	294 4 859	108 2 904	186 1 955
Bleckley County	10 005 11 069	3 816 3 811	2 864 3 109	2 223 2 598	534 384	952 702	884 629	452 278	369 217	2.62 2.90	3 09 3.25	425 8	121 8	304
Bryan County	15 026 15 301 39 458	5 392 5 070 14 984	4 040 4 226 9 685	2 881 3 514 7 449	974 554 1 782	1 352 844 5 299	1 223 735 3 488	628 305 1 293	496 218 1 042	2.79 3.02 2.63	3.30 3.34 3.15	372 137 3 667	279 - 607	93 137 3 060
Butte County	20 363 13 557	7 037 4 696	5 288 3 697	3 482 2 822	1 543 686	1 749 999	1 573 872	738 408	564 308	2.89 2.89	3.41 3.31	216 1 769	216 1 653	116
Cothour County	4 916 27 328	1 794 9 459	1 269 7 472	837 6 152	1 003	525 1 987	491 1 609	292 415	234 311	2.74 2.89	3.36 3.28	97 2 839	97 130	2 709
Condler County	7 449 68 725	2 828 25 370	2 042 18 969	1 536 15 272	415 2 958	786 6 401	717 5 361	361 2 106	286 1 744	2.63 2.71	3 17 3 16	295 2 697	295 758	1 939
Caraosa County	42 109 8 384	7 911	12 366 2 257	10 301 1 748	407	3 379 654	3 033 573	249	1 096	2.67 2.88	3.06 3.32	355 112 7 268	305 112	3 322
hartonachee County hartohaachee County hartonaga County	209 677 10 616 22 059	81 111 2 884 8 467	56 560 2 637 6 393	40 929 2 370 5 041	12 997 214 1 070	24 551 247 2 074	21 036 216 1 915	8 128 62 1 039	6 444 47 843	2 59 3.68 2 61	3.14 3.89 3.06	7 258 6 318 183	3 936 70 183	6 248
Cherokee County	89 441 79 604	31 309 33 170	25 760 18 182	22 476 12 864	2 324	5 549 14 988	4 415 9 547	1 430 2 327	1 152 1 868	2 86 2 40	3 16 3 02	763 7 99 0 77	436 934 74	327 7 056
Clay County	3 287 180 489	1 210 65 523	874 48 734	556 37 003	258 9 216	336 16 789	318 13 035	2 392	1 935	2 72 2 75	3.30	1 563	1 246 -	317
Clinch County	6 034 444 691 29 015	2 173 171 288 10 541	1 655 120 113 7 981	1 257 99 966 6 025	313 15 518 1 614	518 51 175 2 560	476 38 537 2 319	208 6 826 1 038	170 5 634 841	2 78 2 60 2.75	3 25 3 10 3 22	126 3 054 577	96 1 978 237	3C 1 076 340
Olguitt County	34 937 64 929	12 980 21 841	9 736 18 315	7 242 15 649	2 083 2 054	3 244 3 526	2 964 2 939	1 582 832	1 299 661	2.69 2.97	3 16	1 708 1 102	543 948	1 165 154
Coak County	13 172 53 381	4 825 18 930	3 607 15 020	2 789 11 907	649 2 482	1 218 2 910	3 394	589 1 449	489 1 186	2.73 2.82	3 22 3.20	284 472	128 456	156 16
Crowford County	8 809 19 599	3 069 7 287	2 412 5 300	1 896 3 595	1 491	1 987	1 808	238 678	178 717	2 87 2 69	3 29	182 412	108 408	14
Dade County	12 563 9 377 24 748	4 661 3 360 8 962	3 735 2 734 6 675	3 170 2 357 4 743	479 26£	926 626	856 536	399 186	298 151 819	2 70 2 79 2 76	3 06 3 12	584 52 763	209 29 446	375 23 317
Vecatur County	535 454 16 627	208 690	137 603 4 687	96 941 3 550	1 634 31 277 952	2 287 7: 087 : 700	2 082 52 645 1 609	1 028 11 728 844	9 789 684	2 57 2.60	3 27 3 12 1 3 12	10 383 980	6 283 980	4 100
Dooly County	9 730 93 017	3 557 34 163	2 582 25 101	1 779 16 535	693 7 500	975 9 062	913 7 966	509 2 767	2 224	2 74 2 72	3.31 3.24	171 3 294	143 1 156	26 2 138
Douglas County only County chois County	70 334 11 649 2 319	24 277 4 263 816	19 739 3 113 654	16 \$47 2 207 548	2 415 740 78	4 538 1 150 162	3 643 1 064 153	1 107 604 63	887 475 48	2.90 2.73 2.84	3.22 3.29 3.26	786 205 15	664 205	122
ffingham County	25 636 18 634	8 759 7 115	7 149 5 314	5 921 4 078	928	1 610	1 422	560 883	439 719	2.93 2.62	3.28 3.10	51 315	51 263	52
manuel County	20 210 8 374	7 420 3 144	5 501 2 284	4 069 1 671	1 205	1 919 860	1 799	937 391	740 300	2.72 2.66	3.25	336 350	326 319	10 31
onnin County	15 863 62 218	6 334 21 054	4 844 18 018	4 126 16 110	528 1 439	1 490 2 036	1 401 2 640	753 ! 001	590 826	2.50 2.96	3.23	129 197	120 197	9
orsyth County ranklin County	77 939 43 792 16 286	30 518 15 938 6 365	12 787 4 787	17 742 11 164 3 960	3 852 1 113 629	3 151 1 578	2 590 1 480	3 306 964 776	775	2.75 2.75 2.56	3.02 3.07 3.02	3 312 291 364	1 657 276 166	1 655 15 198
ulton County	626 974	257 140	155 887	99 206	47 519	101 253	79 746	21 475	17 301	2.44	3 11	21 977	8 405	13 572
Honer County	13 179 2 243 61 437	5 072 867 23 947	3 940 649 17 308	3 352 541 13 214	454 84 3 345	1 132 218 6 639	1 035 196 5 647	543 98 2 319	437 72 1 840	2 60 2 59 2.57	2 99 3 04 3.04	189 114 1 059	189 114 645	414
ordon County	34 749 20 001	12 778 7 354	9 939 5 571	8 238 4 218	1 320	2 839 1 783	2 530 1 638	1 116 884	917 726	2.72 2.72	3 13 3.19	323 278	322 242	1 36
winnert County	11 663 351 247 25 817	126 971	3 012 96 396	2 058 82 398	791 10 481	30 575	974 22 501	503 3 637	385	2 86 2 77	3.42	130 1 663	1 559	23 104
latersham County	93 879 8 747	9 966 34 721 2 969	7 672 26 522 2 201	6 525 21 462 1 279	3 852 788	2 294 8 199 768	2 108 6 959 725	973 2 623 358	787 2 162 268	2.59 2.70 2.95	3.00 3.10 3.55	1 804 1 549 161	1 493 1 035 149	311 514 12
forolson County	21 695 17 624	8 248 6 454	6 252 5 09 2	5 145 4 169	898 714	1 996	1 834	886 559	739 421	2 63 2 73	3 08 3 12	271 164	271 164	-
eard County	19 390 8 498	7 459 3 093	5 679 2 398	4 534 1 912	905 364	1 780 695	613	847 280	692 209	2.60 2.75	3 04 3 17	322 130	318 125	. 4 5
enry County	58 148 87 924 8 520	20 012 32 433 3 142	16 784 24 695 2 350	14 380 19 712 1 763	1 785 3 997 489	3 228 7 738 792	6 677	1 003 1 708 402	817 1 420 319	2 9) 2 71	3 19	593 1 284 129	561 655 129	32 629
ockson County	29 295 8 389	10 721 3 036	8 353 2 307	6 865 1 755	1 093	2 368 729	752 2 086 644	969 303	781 232	2 71 2 73 2 76	3 23 3 13 3 21	710 64	546 64	164
eff Davis County	11 941	4 357 6 093	3 378 4 489	2 627 2 925	1 354	979	870	392 779	333	2 74 2 79	3 15	91 409	91 409	-
chins County chnson County ches County	8 127 8 168 20 519	2 951 3 010 7 300	2 186 2 221 5 801	1 548 1 630 4 605	525 516	765 789 1 499	692 745	340 415	339	2 75 2 71	3 24 3 26	120 161	99 161	21 22
orner County	12 759 5 460	4 669 1 965	3 568 1 505	4 005 2 704 1 144	936 703 297	1 101	1 343 1 001 418	470 487 186	363 385 148	2 81 2 73 2 78	3 21 3 18 3 22	220 279 71	188 120 63	32 159 8
ourens County	38 830 15 592	14 514 5 199	10 822 4 293	8 052 3 429	2 294 68?	3 692 906	3 374 1 782	1 589 300	1 271 235	2 68 3 00	3 16	1 158 658	1 102 658	56
derty County	45 325 7 39 7	2 702	12 404 2 059	10 183 1 557	1 833 387	7 ?32 643	2 233 593	527 305	412 231	7 99 2 74	3 33 3 2!	7 420 45	168 28	7 252 17

SICIPI

Table 6. Household, Family, and Group Quarters Characteristics: 1990—Con.

tot definitions of terms and meanings of symbols see text]

State County Place and [In Selected States] County Subdivision OUNTY—Con. Ing County Indian County	Persons in households 6 119 71 652 13 318 19 842 8 622 12 826 20 902 21 893 6 184 19 986 16 509 6 714 12 705 25 980	All house- holds 2 196 26 311 4 976 7 270 3 186 4 388 7 740 1 962 7 637 2 336 6 798	683 79 123 3 872 5 508 2 371 3 322 6 061 1 524	Married- couple family 1 383 14 300 3 262 3 985 1 689 2 099	Female house- holder no husbond present 218 2 012 138 1 286	Forol 513 7 188	Total	65 years o		Household	Family	Foral	Institu- tionalized persons	Other persons in group quarters
States County Subdivision OUNTY — Con. Ind County Indicate Coun	6 119 71 652 13 318 19 842 8 622 12 826 20 902 5 512 21 893 6 184 19 986 16 509 6 714	2 196 26 311 4 976 7 270 3 186 4 388 7 740 1 962 7 637 2 336	1 683 19 123 3 872 5 508 2 371 3 322 6 061 1 524	1 383 14 300 3 262 3 985 1 689	house- holder no husband present 218 2 012 38	513 7 188	447	Fotol		Household	Family	Foral	tionalized	sons in group
Subdivision OUNTY — Con. "a County — words: County — con County — coro — — co	6 119 71 652 13 318 19 842 8 622 12 826 20 902 5 512 21 893 6 184 19 986 16 509 6 714	2 196 26 311 4 976 7 270 3 186 4 388 7 740 1 962 7 637 2 336	1 683 19 123 3 872 5 508 2 371 3 322 6 061 1 524	1 383 14 300 3 262 3 985 1 689	218 J 012 J 38	513 7 188	447		Female	Household	Family	Foral	tionalized	group
ing County moker County county county county county county coro County coro County corin County corin County corin County corin County corin County	71 652 13 318 19 862 8 622 12 826 20 902 5 512 21 893 6 184 19 986 16 509 6 714	26 311 4 976 7 270 3 186 4 388 7 740 1 962 7 637 2 336	79 123 3 872 5 508 2 371 3 322 6 061 1 524	14 300 3 262 3 985 1 689	738 7 015	7 188								
ywrdes County John County Loufrie County Loufrie County Loufrie County Loufrie County Lodoffic County Lodoffic County Lodoffic County Loren County	71 652 13 318 19 862 8 622 12 826 20 902 5 512 21 893 6 184 19 986 16 509 6 714	26 311 4 976 7 270 3 186 4 388 7 740 1 962 7 637 2 336	79 123 3 872 5 508 2 371 3 322 6 061 1 524	14 300 3 262 3 985 1 689	738 7 015	7 188					1			
makin County Cictrifie County Lichtook County Lichtook County Lacon County Ladorson County	19 862 8 622 12 826 20 902 5 512 21 893 6 184 19 986 16 509 6 714 12 705	7 270 3 186 4 388 7 740 1 962 7 637 2 336	5 508 2 371 3 322 6 061 1 524	3 985 I 689			5 744	185 2 095	136	2 79 2 72	3 22 3.22	83 4 329	1 814	79 2 5i5
icinfosh County	8 622 12 826 20 902 5 512 21 893 6 184 19 986 16 509 6 714 12 705	3 186 4 388 7 740 1 962 7 637 2 336	2 371 3 322 6 061 1 524	1 689		1 104 1 762	962 1 558	370 676	283 539	2 68 2.73	3 07 3.19	1 255 257	156 232	1 099 25
ladison County	20 902 5 512 21 893 6 184 19 986 16 509 6 714 12 705	7 740 1 962 7 637 2 336	6 061 1 524		540	815	730	349	246	2.71	3 19	12	12	-
erwether County	21 893 6 184 19 986 16 509 6 714 12 705	7 637 2 336	1 524	5 075	1 046 749	1 066	991 1 459	513 677	412 559	2.92 2.70	3.46	288 148	288 109	39
	6 184 19 986 16 509 6 714 12 705	2 336	£ 2000	1 132	317	438 1 837	392	203	166	2.81 2.87	3.22 3.38	78 518	78	177
	16 509 6 714 12 705	6 708 1	5 800 1 741	4 122 1 334	1 363 319	595	1 685 554	638 316	676 250	2.65	3 14	96	341 96	1//
richell County	6 714 12 705		5 254	3 533	1 457	1 544	1 414	759	632	2.94	3.42	289	212	77
onroe County		5 838 2 493	4 547 1 842	3 549 1 432	800 323	1 291	1 130 599	477 313	374 235	2.83 2.69	3.25 3.20	604 449	599 213	236
organ County		4 399 9 363	3 442 7 499	2 588 6 238	681 891	957 1 864	854 1 628	417 606	329 488	2.89 2.77	3.32	178 167	158 161	20 6
uscogee County	171 700	65 858	47 235	33 380	11 803	18 623 [16 122	5 847	4 716	2.61	3.12	7 578	2 963	4 615
onee County	41 040 17 474	14 401 6 156	11 337 4 960	8 908 4 253	1 715 555	3 064	2 633 987	1 210 394	997 329	2.85 2.84	3.25	768 144	140	450
ethorpe County	9 681	3 581 (2 748	2 168	148	833	737	317	240	2.70	3.14	82	82	_
rulding County	41 289 19 954	14 326 7 142	11 999 5 465	10 350 3 844	1 216	2 327	! 964 ! 428	772 603	181	2.88 2.79	3,17	322 1 235	309 82	13 1 153
ckens County	14 252	5 386	4 239	3 607	455	1 147	1 051	516	390	2 65	3 03	≀80	180	. 1.3
erce County	13 262 10 100	4 807 3 526	3 759 2 824	3 104 2 385	507 317	1 048 702	982 647	488 321	390 255	2.76 2.86	3 19 3.26	66 124	66 124	-
ek County	33 410	12 519	9 455	7 404	1 628	3 064	2 833	1 518	1 217	2.67	3.13	405	379	26
room County	7 986 13 856	3 098 5 229	2 185 3 938	1 584 3 043	504 702	913	842 1 118	432 429	348 330	2.58 2.65	3 15 3.07	122 281	122 277	4
atmon County	2 205	857	626	428	167	231	214	112	72	2.57	3.06	4	-	3
ndoigh County	11 460 7 694	4 630 2 815	3 477 2 003	2 940 1 301	595	(153 812	1 036 773	524 463	365 365	2 48 2 73	2.89 3.36	188 329	166 104	22 225
hmond County	179 514	68 675	47 685	32 988	12 384	20 990	17 907	5 732	4 570	2.61	3.18	10 205	3 423	5 782
ckdale County	53 546 3 581	18 337	15 121 964	12 771 739	1 317	3 216 351	2 638 324	932 171	790 153	2.92 2.72	3.23 3.25	545	499 7	46
even County	13 613	5 048	3 698	2 660	365	1 350	1 238	618	\$00	2.70	3 23 {	229	204	25
m-note County	8 420 53 613	3 137	2 336 14 901	1 729 11 314	3 222	801 4 525	747 3 974	410 1 771	325	2 68 2 76	3.19	590 844	98 - 838	492 6
epnens County	. 22 688	8 949	6 633	5 453	758	2 316	2 131	1 285	587	2.54	3 00	569 111	90 -111	479
mier County	5 543 28 811	1 982 10 484	1 439 7 610	921 5 034	2 275	2 874	505 2 544	280 1 087	213 885	2.80 2.75	3.40 3.30	1 417	771	646
(bot County	6 517	2 345	1 765	1 188	473	580	543	263	199	2.78	3 28	7	7	-
rnail County	1 915 15 251	5 845	492 4 272	344 3 276	119 326	235 I 573	230	142 733	580	2.63 2.61	3.32	2 471	2 189	262
vior County	7 632	2 804 4 017	2 070	1 431	530	734	675	367	302	2 72	3.24	10	10	15
for County	, 10 641 10 508	3 738	2 901 2 772	2 080 I 823	688 304	966	1 044 887	590 488	470 393	2 65 2.81	3.20	359 145	344 145	-
omas County	38 325 33 450	14 323 12 184	10 644 9 101	7 604 6 801	2 564	3 679 3 083	3 342 2 724	1 624 1 197	1 333 978	2.68 2.75	3.16	661 1 548	580 385	اؤ 3د: ا
t County	23 652	8 804	6 386	4 751	1 353	2 418	2 179	973	778	2 69	3 23 3 23	420	388	32
wns County	6 362 5 917	2 812 2 158	2 056 1 607	1 815 1 176	183 (366 (756 551	712 513	367 298	285 243	2 26 2 74	2.69 3.27	392 77	78 65	314 · 2
ue County	54 500	20 371	14 980	11 053	3 292	5 391	4 771	2 231	1 827	2 68	3 18	1 036	711	325
ner County	8 586	3 043	2 331	1 683	576	712	673	379	312	2 82	3 32	117	117	-
iggs County	9 650 11 769	3 296 4 709	2 570 3 653	1 896 3 182	553 355	1 056	665 } 780	291 535	222) 406	2.93 2.50	3.39 2.88	156 224	151 221	3
son County	25 840 57 524	21 697	7 335 14 887	5 467 13 896	2 336	2 576 4 810	2 377	7 282 2 111	1 046 1 758	2 61 2.65	3 09 3.05	460 816	448 806	10
liter County	38 229	13 433	10 749	8 634	1 513	2 684	4 355 2 332	1 101	893	2 85	3.22	357	357	-
rren County	33 788 5 974	13 046	9 416 1 603	7 068 I 056	1 945	3 630 527	3 311 487	1 624 . 296	1 317	2.59 2.80	3.12	1 683 104	1 593 104	90
shington County	18 789	6 739	4 985	3 396	1 330	1 754	1 606	776	624	2.79	3.32	323	311	12
yne County	21 761	7 922	6 113	4 803	1 053	1 809	1 670	783	606	2.75	3 19	595	582	13
bster County	2 263 4 817	1 786	610 1 331	445 1 028	235	188 I 455 I	172	86 273	225	2.84 2.70	3.32 3.21	86	65	21
rte County	12 523	4 907	3 798	3 285	382	1 109	1 023	475	374	2.55	2.95	483	161 571	322 83
ethield County	71 808 6 807	26 859	20 506 1 833	1 389	2 940 360	6 353 678	5 455	1 995 376	1 633	2.67 2.71	3.08	654 201	201	
kes County	10 511 10 183	4 022 3 619	2 932 2 755	2 132 2 032	646	1 090 864	1 008 788	566 352	415 274	2.61 2.81	3.12 3.31	86 45	86 45	-
kinson County	19 618	6 895	5 428	4 107	1 057	1 467	1 345	675	541	2.85	3.27	127	53	74
ACE AND COUNTY SUBDIVISION		1				-			-		- 1			
beville city	809	303	221	153	54	82	76	49	40	2 67	3.16	98	98	-
Dodge County	809	303	221	153	-	82	-]	49	40	2.67		98	98	-
Wilcox County		í			54	- 1	76		- 1		3.16			-
worth city, Cabb County	4 517 2 131	1 758 772	1 260 587	1 017 391	199 160	498 185	402 168	153 95	137 78	2.57 2.76	3.04 3.19	2	2	-
rl city, Cook County	4 927	1 793	1 289	859	359	504	466	246	207	2.75	3.33	166	128	38
rion city	615	238	170	116	45	68	62	33	30	2.58	3.08	-	-	-
Emanuel County	293 322	113	86 84	64 52	18	27 41	26 36	15 18	14	2.59 2.58	2.98 3.18	-	-	-
ry city, Montgomery County	484	183	135	100	24	48	45	26	22	2.64	3.15	95	_	95
mo city, Wheeler County	849	319	232	162	56	87	85	58	49	2.66	3.24	6	6	23
paha town, Berrien County	789 75 233	27 926	222 19 977	146 12 351	6 724	7 949	6 990	27 2 482	1 992	2.75 2.69	3.20 3.25	23 2 889	1 129	1 760
lora town, Lamar County	127 594	46 210	35	30	4	11	- 11	8	5	2.76 2.83	3.29	-	-	-
		- 1	. 163	138	20	47	38				3 20	-	-	_
Bleckley County	273	105	80	65	14	25	23	13	- 11	2.60	3 05	-	-	-
laurens County	2 40	14	 	1 9	;	- 1	;1	- 1	- [2.00 2.86	2.00 3.36	-	-	_
Twiggs County	40 231	90	68	55	12	22	20	112	10	2.86 2.57	3.36	-	-	-
na city, Bacon County	3 533	1 397	959	571	355	438	417	234	191	2 53	3 11	130	(21	9
haretta city, Fulton County	12 884 160	5 265	3 603 42	3 013 36	478	1 662	1 282	280	240	2.45 2.86	2 95 3 45	118	118	-

TELEPHONE CONTACT SUMMARY

DYNAMAC CORPORATION

CALL MADE BY: Sandra J. Harrigan

DATE: May 6, 1994

TIME: 9:45 am

SIGNATURE/DATE

/ ~

PERSON CONTACTED: NAME Carl Hall

TITLE Regional Supervisor

PHONE (912) 727-2112 or (912) 756-3691

ORGANIZATION Georgia Department of Natural Resources, Wildlife

Resources Division, Coastal Region Fishery Management

GENERAL SUBJECT: The extent of tidal influence in selected surface water bodies in the Savannah, Georgia.

<u>DISCUSSION</u>: Mr. Hall Provided me with the following information on the extent of tidal influence in selected surface water bodies in the Savannah area.

<u>Hardin Canal</u> - The Hardin Canal is not tidal at Interstate 16. The extent of tidal influence ends between Highway 17 and Interstate 16. This canal is not tidally influence in the Pooler area.

<u>Pipe Makers Canal</u> - The extent of tidal influence in the Pipe Makers Canal is past Highway 307 approximately up to Interstate 95.

<u>Savannah and Ogeechee Canal</u> - No information on tidal influence in available for the Savannah and Ogeechee Canal (Springfield Canal). This canal is usually dry except during and after heavy rainfall.

<u>Savannah and Dundee Canal</u> - The Savannah and Dundee Canal is tidally influenced up to about two miles inland from the mouth of the canal. This canal is dry midway between the Savannah River and Ogeechee River.

<u>Savannah River</u> - The Savannah River is tidally influenced all the way up to river mile 43 near the mouth of Ebenezer Creek in Effingham County. There is reversal of flow up to river mile 33 near Millstone Landing below Interstate 95.

I also asked Mr. Hall about the flow rate of the Savannah River. Mr. Hall replied that I would have to contact the U.S. Geological Survey for flow rate information.

TELEPHONE CONTACT SUMMARY DYNAMAC CORPORATION

CALL MADE BY:

Susan L. Rusher

REGION:

IV

Latex

Dynamac Corporation Ausan & Rusher 9/15/92

SITE:

Construction

DATE:

September 15, 1992

CERCLIS NO.GAD980803696

TIME:

1:50 pm

PERSON CONTACTED:

NAME

Bill Stokes

TITLE

Supervisor Hydrologist

PHONE

1-706-903-9100

ORGANIZATION

U.S.

Geological

Services

ADDRESS

Athens, Georgia

GENERAL_SUBJECT

Types of Surface Water Bodies in the Thunderbolt area.

CONVERSATION_SUMMARY

Mr. Stokes described the Wilmington River as a tidally influenced estuarine body of water that during peak hours of high tide may flow at 10,000 cfs. The net flow out to sea would be approximately 1,000 cfs. The Williamson Creek was defined as a minimal stream at less than 10 cfs, but still tidally influenced. The Savannah River flows at greater than 10,000, but not more than 100,000 cfs.

TELEPHONE CONTACT SUMMARY

DYNAMAC CORPORATION

CALL MADE BY: Sandra J. Harrigan

DATE: April 28, 1994

TIME: 11:00am

SIGNATURE/DAT

4/20/9/

PERSON CONTACTED: NAME Carl Hall

TITLE Regional Supervisor

PHONE (912) 727-2112 or (912) 756-3691

ORGANIZATION Georgia Department of Natural Resources, Wildlife

Resources Division, Coastal Region Fishery Management

GENERAL SUBJECT: Uses of surface water bodies in the Savannah, Georgia.

<u>DISCUSSION</u>: Mr. Hall Provided me with the following information on surface water bodies in the Savannah area.

<u>Hardin Canal</u> - Hardin canal is part of the Ogeechee River watershed. This canal is an industrial drainage canal which is intermittent in the channelized portion. There is no fishing in the shallow portions of the Hardin canal. It is fished in the lower (transitional) end near its confluence with Salt Creek, where it is tidally influenced and contains more water.

<u>Pipe Makers Canal</u> - This canal is extremely long and drains into the Savannah River. There is fishing in the portions west of Highway 307 in the Pooler area. Downstream of Highway 307 (Dean Forrest Road) the canal is intermittent all the way to the Savannah River. There is occasional fishing in the areas downstream of Highway 307. There was a fish kill in one of the tributaries of Pipe Makers canal (near the Savannah Municipal Airport); however, the responsible party was never identified.

Savannah and Ogeechee Canal - This canal is also known as Springfield Canal. The Savannah and Ogeechee Canal is fished from the Savannah River inland. It is intermittent near the government subsidized housing (near the Savannah River); there is no serious fishing in the intermittent portions. Fish caught in this canal include the finger mullet. At this time the city of Savannah is in the process of installing trash screens and a pumping system in this canal to prevent flooding of neighboring residential areas when there is an excess of three inches of rainfall.

<u>Savannah and Dundee Canal</u> - The Savannah and Dundee Canal is an industrial drainage canal. It is very intermittent near Highway 307 and has more water near the Savannah River where it is tidally influenced. There is no fishing in the Savannah and Dundee Canal.

H4128194

C. Hall page 2

Salt Creek - Salt Creek is a fishery. It is also tidally influenced.

<u>St. Augustine Creek</u> - St. Augustine Creek is a fishery. People usually access this creek by boat via the Savannah and Front Rivers. Canoeing is also done in this creek.

<u>Little Ogeechee River</u> - The Little Ogeechee River is a fished from Interstate 95 (I-95) to the upper end of Forrest River. In the dry seasons some areas of the river are dry and there are big holes with water in them where people fish. This river is tidally influence and is accessed by boats. Stripped bass is usually caught in the Little Ogeechee River.

Savannah River - The Savannah River is a fishery. The Coastal Region Fishery Management is currently trying to restore the stripped bass population in the Savannah River; the river is a spawning area for the stripped bass. The Savannah River splits into the Front, Back and Middle Rivers. The Front River is the navigational channel of the Savannah River. It is also the harbor channel, meaning it is used for industrial purposes. The U.S. Environmental Protection Agency (EPA) is currently involved in a useability study of the Front River. Jim Greenfield of the Water Quality Section of EPA can be contacted for further details on the useability study. Fishing does occur in the Front River.

I asked Mr. Hall if there are any surface water intakes that are used for drinking water purposes in the Savannah area along the above mentioned surface water bodies. Mr. Hall replied that there are no surface water intakes along the above mentioned surface water bodies. The only surface water intake that is used for drinking water in the Savannah area is owned by the City of Savannah Water Department and it is located on Albercorn Creek approximately one mile upstream from the confluence of the Savannah River and Albercorn Creek.

Reference No. 11

ENDANGERED & THREATENED SPECIES

of the SOUTHEAST UNITED STATES

"The Red Rook"
REGION 4
ATLANTA

GEORGIA

9300991

ENDANGERED AND THREATENED SPECIES

OF THE

SOUTHEASTERN UNITED STATES

(THE RED BOOK)

Introduction Section, Volume 1

Prepared by:

U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia

January 1992

Availability Unlimited
For Sale by Superintendent of Documents
Post Office Box 371954
Pittsburgh, PA 15250-7954

Stock Order Number: 924-003-0000-6

LITERATURE CITATION FOR THE RED BOOK

U.S. Fish and Wildlife Service. 1992. Endangered and Threatened Species of the Southeast United States (The Red Book). Prepared by Ecological Services, Division of Endangered Species, Southeast Region. Government Printing Office, Washington, DC. 1,070 pp.

Federally Listed Species by State

GEORGIA

(E=Endangered; T=Threatened; CH=Critical Habitat determined)

<u>Mammals</u>	General Distribution
Bat, gray (Myotis grisescens) - E Bat, Indiana (Myptis sodalis) - E Manatee, West Indian (Trichechus manatus) - E Panther, Florida (Felis concolor coryi) - E Whale, finback (Balaenoptera physalus) - E Whale, humpback (Megaptera novaeangliae) - E Whale, right (Eubalaena glacialis) - E Whale, sei (Balaenoptera borealis) - E Whale, sperm (Physeter catodon) - E	Northwest, West Extreme Northwest Coastal waters Entire State Coastal waters Coastal waters Coastal waters Coastal waters Coastal waters Coastal waters
<u>Birds</u>	
Eagle, bald (<u>Haliaeetus leucocephalus</u>) - E Falcon, American peregrine	Entire State
(<u>Falco peregrinus anatum</u>) - E	North
Falcon, Arctic peregrine (Falco peregrinus tundrius) - T Plover, piping (Charadrius melodus) - T Stork, wood (Mycteria americana) - E Warbler, Bachman's (Vermivora bachmanii) - E Warbler, Kirtland's (Dendroica kirtlandii) - E Woodpecker, ivory-billed	Coast, Northwest Coast Southeastern swamps Entire State Coast
(<u>Campephilus principalis</u>) - E Woodpecker, red-cockaded	South, Southwest
(<u>Picoides</u> [= <u>Dendrocopos</u>] <u>borealis</u>) - E - <u>Reptiles</u>	Entire State
Alligator, American (Alligator mississippiensis) - T(S/A)* Snake, eastern indigo	Coastal plain
(<u>Drymarchon</u> corais couperi) - T	Southeast

^{*}Alligators are biologically neither endangered nor threatened. For law enforcement purposes they are classified as "Threatened due to Similarity of Appearance." Alligator hunting is regulated in accordance with State law.

GEORGIA (Cont'd) General Distribution Turtle, Kemp's (Atlantic) ridley (<u>Lepidochelys</u> <u>kempii</u>) - E Coastal waters Turtle, green (Chelonia mydas) - T · Coastal waters Turtle, hawksbill (<u>Eretmochelys imbricata</u>) - E · Coastal waters Turtle, leatherback (Dermochelys coriacea) - E Coastal waters Turtle, loggerhead (<u>Caretta</u> <u>caretta</u>) - To Coastal waters Fishes Darter, amber (Percina antesella) - E,CH Conasauga R., Murray County Darter, goldline (Percina aurolineata - T Upper Coosa River System Darter, snail (Percina tanasi) - T S. Chickamauga Cr., Catoosa County Logperch, Conasauga (Percina jenkinsi) - E,CH Conasauga R., Murray County Shiner, blue (Cyprinella caerulea) - T Conasauga and Coosawattee Rivers, Holly, Rock, Perry, and Turniptown Creeks Sturgeon, shortnose (Acipenser brevirostrum) - E Coastal rivers <u>Mollusks</u> Acornshell, southern (Epioblasma othcaloogensis) - E Coosa River drainage Clubshell, southern (Pleurobema decisum) - E Coosa River and tributaries Combshell, upland (Epioblasma metastriata) - E Conasauga River Kidneyshell, triangular (Ptychobranchus greeni) - E Coosa drainage of the Conasauga River Moccasinshell, Alabama (Medionidus acutissimus) - T Conasauga River Moccasinshell, Coosa (Medionidus parvulus) - E Chatooga River; Conasauga River Pocketbook, fine-lined (Lampilis altilis) - T Conasauga River Pigtoe, southern (Pleurobema georgianum) - E Upper Conasauga River

State Lists 3/17/93

GEORGIA (Cont'd)

General Distribution

Plants

Amphianthus pusillus (little amphianthus) - T

Piedmont Region (17 Counties)

Baptisia arachnifera (hairy rattleweed) - E

Wayne, Brantley Counties

Echinacea laevigata (smooth coneflower) - E

Stephens County

<u> Helonias bullata</u> (Swamp pink) - T

Union County

<u>Isoetes melanospora</u> (black-spored quillwort) - E

Dekalb, Rockdale, Gwinnett Counties

<u>Isoetes</u> <u>tegetiformans</u> (mat-forming quillwort) - E

Columbia, Hancock, Greene, Putnam Counties

<u>Isotria medeoloides</u> (small whorled pogonia) - E
<u>Lindera melissifolia</u> (pondberry) - E
<u>Marshallia mohrii</u> (Mohr's
Barbara's-buttons) - T

Rabun County Wheeler County

Oxypolis Canbyi (Canby's dropwort) - E

Floyd County

<u>Ptilimnium nodosum</u> (harperella) - E <u>Rhus michauxii</u> (Michaux's sumac) - E Burke, Lee, Sumter Counties Greene County Elbert, Columbia, Gwinnett, Muscogee, Newton, Rabun, Counties

<u>Sagittaria</u> <u>secundifolia</u> (Kral's waterplantain) - T <u>Silena polypetala</u> (fringed campion) - E

Chattooga County Bibb, Crawford, Taylor, Talbot Counties Towns County

<u>Sarracenia oreophila</u> (green pitcher plant) - E <u>Scutellaria montana</u> (large-flowered skullcap) - E

Floyd, Gordon, Walker
Counties
Baker, Dougherty Counties
Walker, Dade Counties
Decatur County
Tallulah-Tugaloo River
system, Rabun and Habersham
Counties
Clay, Columbia, Early,

Schwalbea americana (American chaffseed) - E Spiraea virginiana (Virginia spiraea) - T Torreya taxifolia (Florida torreya) - E Trillium persistens (persistent trillium) - E

Bartow County

Talbot, Lee Counties

Trillium reliquum (relict trillium) - E

<u>Xyris Tennesseensis</u> (Tennessee yellow-eyed grass) - E

COMMERCE

WEATHER F. W. Reich.

TECHNICAL PAPER NO. 40

RAINFALL FREQUENCY ATLAS OF THE UNITED STATES

for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years

Prepared by
DAVID M. HERSHFIELD

Cooperative Studies Section, Hydrologic Services Division

-

Engineering Division, Sail Conservation Service U.S. Department of Agriculture

PACPERTY

The atlases described below may be ordered on one reel of 35mm microfilm at \$12.50, or as individual paper pages at \$2 per page, \$4 service and handling charge per order.

(Prices subject to change without notice.)

Call to confirm current price.

National Climatic Data Center Pederal Building Asheville, NC 28801-2696 704 CLI-MATE or 704-259-0682 Telex 6502643731

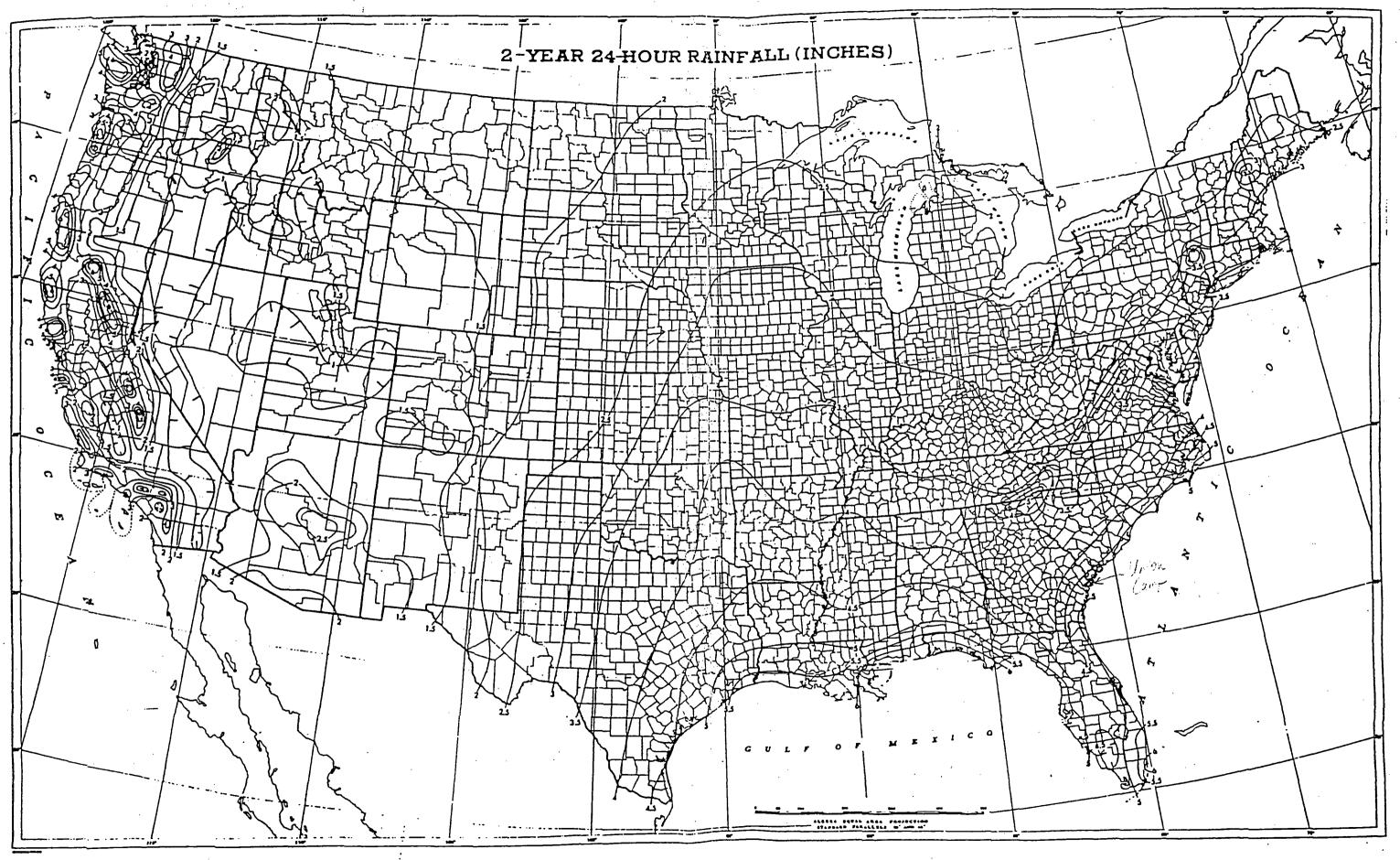
VISA

TP-40: Rainfall Frequency Atlas of the US - Weather Bureau Technical Paper No. 40 (Washington, DC: GPO, 1961) 14x21 ins, paper cover, 61 pages. (Superseded in part by two publications listed below.)

Presents 49 US rainfall frequency maps for selected durations from . 30 minutes to 24 hours and return periods from 1 to 100 years. OUT-OF-PRINT, but a 8 1/2x14 in. reduced photocopy priced at \$15 is available from the NCDC address above. Make payment to "Commerce-NOAA-NCDC".

HYDRO-35: Five- to 60-Minute Precipitation Frequency for the Eastern and Central US - NOAA Technical Hemorandum NWS HYDRO-35 (Silver Spring, MD: NWS, 1977) 8 1/2xil ins, cardstock cover, 36 pages. (Supersedes TP-40 above for the eastern 2/3 of the US for durations of 1 hr. and less).

Presents 6 US rainfall frequency maps for durations of 5, 15 and 60 minutes at return periods of 2 and 100 years. Equations are given -to derive 10- and 30-min values between 2 and 100 years.


Order from: National Technical Info. Svc. Order No : PB 272-112 5285 Port Royal Rd. Prices: Paper \$8.50 Springfield, VA 22161 Microfiche \$4.50 Order Desk Phone: 703-487-4650

NOAA Atlas 2: Precipitation Frequency Atlas of the Western US (Washington, DC: GPO, 1973) 16x22 ins, cardstock cover, 11 Vols (Supersedes TP-40 above for the 11 western states) OUT OF PRINT.

This atlas contains maps for the 6- and 24-hour durations for return periods of 2, 5, 10, 25, 50, and 100 years. All maps are prepared on the same 1:2,000,000 scale.

Vol.	State	Pages	Photocopy Price
I	Montana	34	_ \$ 68.00
II	Wyoming	34	\$ 68.00
III	Colorado	47	_\$ 94.00
IV	New Mexico	34	\$ 68.00
♥	Idaho	3 5	\$ 70.00
VI	Utah	46	\$ 92.00
VII	Nevada	3 5	\$ 70.00
VIII	Ari zona	3 3	\$ 66.00
IX	Washington	3 5	\$ 70.00
X	Oregon	3 5	\$ 70.00
XI	California	48	\$ 96.00

(Note: Topographic contours and city names not always legible on microprints of NOAA Atlas 2. Blank, numbered pages are not reproduced, resulting in apparent missing pages, but no data pages are missing.)

gaganger gegenek<mark>timen transkarre. Het til e</mark> milikalarna i fort har het en en av av dengar met delegte e stelle

GRAPHICAL EXPOSURE MODELING SYSTEM

Version 10.0

developed by

GENERAL SCIENCES CORPORATION

for

U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF PESTICIDES AND TOXIC SUBSTANCES

A series of HELP information is available by entering HELP or TUTOR command. Use the PR procedure in the Utilitie

Alt-Z FOR HELP| IBM PC | FDX | 2400 E71 | LOG CLOSED | PRINT OFF | ON-LINE

Press RETURN key to continue ...

CENSUS DATA

ONTON CAME						
LATITUDE	32: 5	:57	LONGITUDE	81: 7:58	1990	POPULATION

KM	0.00400	.400810	.810-1.60	1.60-3.20	3.20-4.80	4.80-5.40	SECTOR TOTALS
8 1	0	0	0	0	0	0	0
S 2	Ø	28	0	0	Ø	0	28
S 3	0	Ø	856	5533	5431	16859	28679
S 4	Ø	0	589	2777	5083	14241	22690
S 5	Ø	0	1328	0	1598	2810	5736
S 6	0	0	0	6071	660	0	6731
RING	. 0	28	2773	14381	12772	33910	53864

Press RETURN key to continue ... Alt-Z FOR HELP| IBM PC | FDX | 2400 E71 | LOG CLOSED | PRINT OFF | ON-LINE